Skip to main content

Advertisement

Log in

Hill Coefficient Analysis of Transmembrane Helix Dimerization

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Here, we employed the Hill equation, used broadly to characterize cooperativity in protein–ligand binding, to describe the dimerization of transmembrane (TM) helices in hydrophobic environments. The Hill analysis of wild-type fibroblast growth factor receptor 3 (FGFR3) TM domain dimerization gives a Hill coefficient of ~1 for lipid bilayers but only ~0.2 for sodium dodecyl sulfate (SDS) micelles. We propose that this finding is indicative of heterogeneity in FGFR3 TM dimer structure and stability in SDS micelles. We further speculate that (1) the Hill equation can be used as a tool to assess the existence of multiple structural states of TM dimers in different hydrophobic environments and (2) the structural heterogeneity, detectable by Hill analysis, may be the underlying reason for the broad peaks and the low resolution NMR studies of peptides in detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adair BD, Engelman DM (1994) Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers—a resonance energy transfer study. Biochemistry 33:5539–5544

    Article  PubMed  CAS  Google Scholar 

  • Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266

    Article  PubMed  CAS  Google Scholar 

  • Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, Arseniev AS (2008a) Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J Biol Chem 283:29385–29395

    Article  PubMed  CAS  Google Scholar 

  • Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008b) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283:6950–6956

    Article  PubMed  CAS  Google Scholar 

  • Call ME, Schnell JR, Xu CQ, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zeta zeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368

    Article  PubMed  CAS  Google Scholar 

  • Duong MT, Jaszewski TM, Fleming KG, MacKenzie KR (2007) Changes in apparent free energy of helix–helix dimerization in a biological membrane due to point mutations. J Mol Biol 371:422–434

    Article  PubMed  CAS  Google Scholar 

  • Finger C, Volkmer T, Prodohl A, Otzen DE, Engelman DM, Schneider D (2006) The stability of transmembrane helix interactions measured in a biological membrane. J Mol Biol 358:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Fisher LE, Engelman DM, Sturgis JN (1999) Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J Mol Biol 293:639–651

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:iv–vii

    Google Scholar 

  • Li E, Hristova K (2006) Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry 45:6241–6251

    Article  PubMed  CAS  Google Scholar 

  • Li E, You M, Hristova K (2005) SDS-PAGE and FRET suggest weak interactions between FGFR3 TM domains in the absence of extracellular domains and ligands. Biochemistry 44:352–360

    Article  PubMed  CAS  Google Scholar 

  • Li E, You M, Hristova K (2006) FGFR3 dimer stabilization due to a single amino acid pathogenic mutation. J Mol Biol 356:600–612

    Article  PubMed  CAS  Google Scholar 

  • Li M, Reddy LG, Bennett R, Silva ND Jr, Jones LR, Thomas DD (1999) A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys J 76:2587–2599

    Article  PubMed  CAS  Google Scholar 

  • Liu JF, Rost B (2001) Comparing function and structure between entire proteomes. Protein Sci 10:1970–1979

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie KR (2006) Folding and stability of alpha-helical integral membrane proteins. Chem Rev 106:1931–1977

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133

    Article  PubMed  CAS  Google Scholar 

  • Matthews EE, Zoonens M, Engelman DM (2006) Dynamic helix interactions in transmembrane signaling. Cell 127:447–450

    Article  PubMed  CAS  Google Scholar 

  • Merzlyakov M, Chen L, Hristova K (2007) Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method. J Membr Biol 215:93–103

    Article  PubMed  CAS  Google Scholar 

  • Merzlyakov M, Hristova K (2008) Forster resonance energy transfer measurements of transmembrane helix dimerization energetics. Methods Enzymol 450:107–127

    Article  PubMed  CAS  Google Scholar 

  • Merzlyakov M, Li E, Casas R, Hristova K (2006a) Spectral Forster resonance energy transfer detection of protein interactions in surface-supported bilayers. Langmuir 22:6986–6992

    Article  PubMed  CAS  Google Scholar 

  • Merzlyakov M, You M, Li E, Hristova K (2006b) Transmembrane helix heterodimerization in lipids bilayers: probing the energetics behind autosomal dominant growth disorders. J Mol Biol 358:1–7

    Article  PubMed  CAS  Google Scholar 

  • Popot J-L, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    Article  PubMed  CAS  Google Scholar 

  • Posokhov YO, Merzlyakov M, Hristova K, Ladokhin AS (2008) A simple “proximity” correction for Forster resonance energy transfer efficiency determination in membranes using lifetime measurements. Anal Biochem 380:134–136

    Article  PubMed  CAS  Google Scholar 

  • Walkenhorst WF, Merzlyakov M, Hristova K, Wimley WC (2009) Polar residues in transmembrane helices can decrease electrophoretic mobility in polyacrylamide gels without causing helix dimerization. Biochim Biophys Acta 1788:1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  PubMed  CAS  Google Scholar 

  • White SH, Wimley WC, Ladokhin AS, Hristova K (1998) Protein folding in membranes: determining the energetics of peptide–bilayer interactions. Methods Enzymol 295:62–87

    Article  PubMed  CAS  Google Scholar 

  • White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398

    Article  PubMed  CAS  Google Scholar 

  • You M, Li E, Wimley WC, Hristova K (2005) FRET in liposomes: measurements of TM helix dimerization in the native bilayer environment. Anal Biochem 340:154–164

    Article  PubMed  CAS  Google Scholar 

  • You M, Li E, Hristova K (2006) The achondroplasia mutation does not alter the dimerization energetics of FGFR3 transmembrane domain. Biochemistry 45:5551–5556

    Article  PubMed  CAS  Google Scholar 

  • You M, Spangler J, Li E, Han X, Ghosh P, Hristova K (2007) Effect of pathogenic cysteine mutations on FGFR3 transmembrane domain dimerization in detergents and lipid bilayers. Biochemistry 46:11039–11046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM068619 and Research Scholar Grant RSG-04-201-01 from the American Cancer Society (to K. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalina Hristova.

Additional information

R. Soong and M. Merzlyakov have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soong, R., Merzlyakov, M. & Hristova, K. Hill Coefficient Analysis of Transmembrane Helix Dimerization. J Membrane Biol 230, 49–55 (2009). https://doi.org/10.1007/s00232-009-9185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9185-1

Keywords

Navigation