Skip to main content
Log in

Fluorescence Quenching as a Tool to Investigate Quinolone Antibiotic Interactions with Bacterial Protein OmpF

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The outer membrane porin OmpF is an important protein for the uptake of antibiotics through the outer membrane of gram-negative bacteria; however, the possible binding sites involved in this uptake are still not recognized. Determination, at the molecular level, of the possible sites of antibiotic interaction is very important, not only to understand their mechanism of action but also to unravel bacterial resistance. Due to the intrinsic OmpF fluorescence, attributed mainly to its tryptophans (Trp214, Trp61), quenching experiments were used to assess the site(s) of interaction of some quinolone antibiotics. OmpF was reconstituted in different organized structures, and the fluorescence quenching results, in the presence of two quenching agents, acrylamide and iodide, certified that acrylamide quenches Trp61 and iodide Trp214. Similar data, obtained in presence of the quinolones, revealed distinct behaviors for these antibiotics, with nalidixic acid interacting near Trp214 and moxifloxacin near Trp61. These studies, based on straightforward and quick procedures, show the existence of conformational changes in the protein in order to adapt to the different organized structures and to interact with the quinolones. The extent of reorganization of the protein in the presence of the different quinolones allowed an estimate on the sites of protein/quinolone interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alston RW, Lasagna M, Grimsley GR, Scholtz JM, Reinhart GD, Pace CN (2008) Tryptophan fluorescence reveals the presence of long-range interactions in the denatured state of ribonuclease Sa. Biophys J 94:2288–2296

    Article  PubMed  CAS  Google Scholar 

  • Ball P (2000) Quinolone generations: natural history or natural selection? J Antimicrob Chemother 46:17–24

    PubMed  CAS  Google Scholar 

  • Bedard J, Bryan LE (1989) Interaction of the fluoroquinolone antimicrobial agents ciprofloxacin and enoxacin with liposomes. Antimicrob Agents Chemother 33:1379–1382

    PubMed  CAS  Google Scholar 

  • Bensikaddour H, Fa N, Burton I, Deleu M, Lins L, Schanck A, Brasseur R, Dufrene YF, Goormaghtigh E, Mingeot-Leclercq MP (2008) Characterization of the interactions between fluoroquinolone antibiotics and lipids: a multitechnique approach. Biophys J 94:3035–3046

    Article  PubMed  CAS  Google Scholar 

  • Chapman JS, Georgopapadakou NH (1988) Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 32:438–442

    PubMed  CAS  Google Scholar 

  • Chevalier J, Mallea M, Pages JM (2000) Comparative aspects of the diffusion of norfloxacin, cefepime and spermine through the F porin channel of Enterobacter cloacae. Biochem J 348:223–227

    Article  PubMed  CAS  Google Scholar 

  • Coutinho A, Prieto M (1993) Ribonuclease-T(1) and alcohol-dehydrogenase fluorescence quenching by acrylamide—a laboratory experiment for undergraduate students. J Chem Educ 70:425–428

    Article  CAS  Google Scholar 

  • Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, Rosenbusch JP (1992) Crystal structures explain functional properties of 2 Escherichia coli porins. Nature 358:727–733

    Article  PubMed  CAS  Google Scholar 

  • Denis A, Moreau NJ (1993) Mechanisms of quinolone resistance in clinical isolates—accumulation of sparfloxacin and of fluoroquinolones of various hydrophobicity, and analysis of membrane composition. J Antimicrob Chemother 32:379–392

    Article  PubMed  CAS  Google Scholar 

  • Eftink MR (1991) Fluorescence quenching: theory and applications. Plenum, New York

    Google Scholar 

  • Fernandes F, Neves P, Gameiro P, Loura LMS, Prieto M (2007) Ciprofloxacin interactions with bacterial protein OmpF: modelling of FRET from a multi-tryptophan protein trimer. Biochim Biophys Acta Biomembr 1768:2822–2830

    Article  CAS  Google Scholar 

  • Garavito RM, Rosenbusch JP (1986) Isolation and crystallization of bacterial porin. Methods Enzymol 125:309–328

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S (1986) Differences in susceptibility to quinolones of outer-membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 29:535–538

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  • Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta Biomembr 1612:1–40

    Article  CAS  Google Scholar 

  • Lehrer SS (1971) Solute perturbation of protein fluorescence—quenching of tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS (1977) Heterogeneity and solute quenching of protein fluorescence. Biophys J 19:77–78

    Article  PubMed  CAS  Google Scholar 

  • Lima SAC, Cordeiro-Da-Silva A, de Castro B, Gameiro P (2008) Benzodiazepine-mediated structural changes in the multidrug transporter p-glycoprotein: an intrinsic fluorescence quenching analysis. J Membr Biol 223:117–125

    Article  PubMed  CAS  Google Scholar 

  • Mach T, Neves P, Spiga E, Weingart H, Winterhalter M, Ruggerone P, Ceccarelli M, Gameiro P (2008) Facilitated permeation of antibiotics across membrane channels—interaction of the quinolone moxifloxacin with the OmpF channel. J Am Chem Soc 130:13301–13309

    Article  PubMed  CAS  Google Scholar 

  • Mascaretti OA (2003) Bacteria versus antibacterial agents: an integrated approach. ASM Press, Washington DC

    Google Scholar 

  • McCaffrey C, Bertasso A, Pace J, Georgopapadakou NH (1992) Quinolone accumulation in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antimicrob Agents Chemother 36:1601–1605

    PubMed  CAS  Google Scholar 

  • Moro F, Goni FM, Urbaneja MA (1993) Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers. FEBS Lett 330:129–132

    Article  PubMed  CAS  Google Scholar 

  • Mortimer PGS, Piddock LJV (1993) The accumulation of 5 antibacterial agents in porin-deficient mutants of Escherichia coli. J Antimicrob Chemother 32:195–213

    Article  PubMed  CAS  Google Scholar 

  • Neves P, Berkane E, Gameiro P, Winterhalter M, de Castro B (2005) Interaction between quinolones antibiotics and bacterial outer membrane porin OmpF. Biophys Chem 113:123–128

    Article  PubMed  CAS  Google Scholar 

  • Neves P, Leite A, Rangel M, de Castro B, Gameiro P (2007) Influence of structural factors on the enhanced activity of moxifloxacin: a fluorescence and EPR spectroscopic study. Anal Bioanal Chem 387:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli—studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252

    PubMed  CAS  Google Scholar 

  • O’Keeffe AH, East JM, Lee AG (2000) Selectivity in lipid binding to the bacterial outer membrane protein OmpF. Biophys J 79:2066–2074

    Article  PubMed  CAS  Google Scholar 

  • Park HR, Kim TH, Bark KM (2002) Physicochemical properties of quinolone antibiotics in various environments. Eur J Med Chem 37:443–460

    Article  PubMed  CAS  Google Scholar 

  • Pestova E, Millichap JJ, Noskin GA, Peterson LR (2000) Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. J Antimicrob Chemother 45:583–590

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJV, Jin YF, Ricci V, Asuquo AE (1999) Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. J Antimicrob Chemother 43:61–70

    Article  PubMed  CAS  Google Scholar 

  • Raja SM, Rawat SS, Chattopadhyay A, Lala AK (1999) Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J 76:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues C, Gameiro P, Reis S, Lima JLFC, de Castro B (2002) Interaction of grepafloxacin with large unilamellar liposomes: partition and fluorescence studies reveal the importance of charge interactions. Langmuir 18:10231–10236

    Article  CAS  Google Scholar 

  • Siporin C (1989) The evolution of fluorinated quinolones—pharmacology, microbiological activity, clinical uses, and toxicities. Annu Rev Microbiol 43:601–627

    Article  PubMed  CAS  Google Scholar 

  • Vazquez JL, Merino S, Domenech O, Berlanga M, Vinas M, Montero MT, Hernandez-Borrell J (2001) Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the N-4 piperazinyl alkylation on the antimicrobial activity. Int J Pharm 220:53–62

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC (1989) Treatment of genitourinary tract infections with fluoroquinolones—activity in vitro, pharmacokinetics, and clinical efficacy in urinary-tract infections and prostatitis. Antimicrob Agents Chemother 33:1655–1661

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Partial financial support for this work was provided by Fundação para a Ciência e Tecnologia (FCT, Lisbon) through project POCI/SAU-FCF/56003/2004 and by the EU-Marie-Curie Research training network (MRTN-CT-2005-019335 Translocation). P. N. thanks FCT for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Gameiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neves, P., Sousa, I., Winterhalter, M. et al. Fluorescence Quenching as a Tool to Investigate Quinolone Antibiotic Interactions with Bacterial Protein OmpF. J Membrane Biol 227, 133–140 (2009). https://doi.org/10.1007/s00232-008-9152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9152-2

Keywords

Navigation