Skip to main content
Log in

CD38 in Bovine Lung: A Multicatalytic NADase

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We report the kinetics and molecular properties of CD38 purified from bovine lung microsomal membranes after its solubilization with Triton X-100. The enzyme was found to be a novel member of a multicatalytic NAD+-glycohydrolase (NADase, EC 3.2.2.6). It was able to utilize NAD+ in different ways, producing nicotinamide (Nam) and either adenosine diphosphoribose (ADPR, NADase activity) or cyclic ADPR (cADPR, cyclase activity); it also catalyzed the hydrolysis of cADPR to ADPR (cADPR, hydrolase activity). In addition, the enzyme catalyzed the pyridine base exchange reaction with conversion of NAD+ into NAD analogues. These data are evidence that CD38 is involved in the regulation of both NAD+ and calcium-mobilizing agents, the concentration resulting in an essential enzyme that plays a key role in cellular energy and signal-transduction systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC, Chini EN (2006a) Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 349:353–359

    Article  PubMed  CAS  Google Scholar 

  • Aksoy P, White TA, Thompson M, Chini EN (2006b) Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 345:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Ramirez-Hernandez MH, Ziegler M (2004) The new life of a centenarian: signaling functions of NAD(P). Trends Biochem Sci 29:111–118

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burkle A (2005) Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J 272:4576–4589

    Article  PubMed  Google Scholar 

  • Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS (2005) CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 288:L773–L788

    Article  PubMed  CAS  Google Scholar 

  • Dousa TP, Chini EN, Beers KW (1996) Adenine nucleotide diphosphates: emerging second messengers acting via intracellular Ca2+ release. Am J Physiol Cell Physiol 271:C1007–C1024

    CAS  Google Scholar 

  • Gale EA (2003) Intervening before the onset of type 1 diabetes: baseline data from the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetologia 46:339–346

    Article  Google Scholar 

  • Kaanders JH, Bussink J, van der Kogel AJ (2002) A novel biology-based approach in radiotherapy. Lancet Oncol 3:728–737

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee HC (2002) Cyclic ADP-ribose and NAADP—structure, metabolism and function. Kluwer, Boston

    Google Scholar 

  • Lee HC, Munshi C, Graeff R (1999) Structures and activities of cyclic ADP-ribose, NAADP and their metabolic enzymes. Mol Cell Biochem 193:89–98

    Article  PubMed  CAS  Google Scholar 

  • Magni G, Amici A, Emanuelli M, Orsomando G, Raffaelli N, Ruggieri S (2004) Enzymology of NAD+ homeostasis in man. Cell Mol Life Sci 61:19–34

    Article  PubMed  CAS  Google Scholar 

  • Orsomando G, Polzonetti V, Natalini P (2000) NAD(P)+-glycohydrolase from human spleen: a multicatalytic enzyme. Comp Biochem Physiol B Biochem Mol Biol 126:89–98

    Article  PubMed  CAS  Google Scholar 

  • Wilson HL, Dipp M, Thomas JM, Lad C, Galione A, Evans AM (2001) ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor. J Biol Chem 276:11180–11188

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, Li PL (2006) Vascular physiology of a Ca2+ mobilizing second messenger—cyclic ADP-ribose. J Cell Mol Med 10:407–422

    Article  PubMed  CAS  Google Scholar 

  • Ziegler M (2000) New functions of a long-known molecule. Emerging roles of NAD in cellular signalling. Eur J Biochem 267:1550–1564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Polzonetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polzonetti, V., Pucciarelli, S., Vita, A. et al. CD38 in Bovine Lung: A Multicatalytic NADase. J Membrane Biol 227, 105–110 (2009). https://doi.org/10.1007/s00232-008-9149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9149-x

Keywords

Navigation