Skip to main content
Log in

DNA-Induced Aggregation and Fusion of Phosphatidylcholine Liposomes in the Presence of Multivalent Cations Observed by the Cryo-TEM Technique

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

By means of cryoelectron transmission microscopy (cryo-TEM), we were able to demonstrate the formation of ternary complexes (TC): DNA–phosphatidylcholine liposome–divalent metal cations. Addition of Ba2+ to TC led to visualization of DNA compacting on the liposome surface. Staining the TC by Tb3+ cations revealed the changed secondary structure of DNA located between fused liposomes. Cryo-TEM and liposome turbidity data were analyzed during TC formation. Liposome aggregation and the liposome fusion induced by DNA in TC were observed. Because TC displayed the property of DNA cationic liposome complexes as well as their own unique properties, we were able to consider cationic lipoplexes as a particular case of TC. The involvement of TC and direct DNA–lipid interactions in the formation nuclear pore complexes were assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Ahmad R, Arakawa H, Tajmir-Riahi HA (2003) A comparative study of DNA complexation with Mg(II) and Ca(II) in aqueous solution: major and minor grooves bindings. Biophys J 84:2460–2466

    Article  PubMed  CAS  Google Scholar 

  • Almgren M, Edwards K, Karlsson G (2000) Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf A Physicochem Eng Asp 174:3–21

    Article  CAS  Google Scholar 

  • Brown CR, Silver PA (2007) Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 17:100–106

    Article  PubMed  CAS  Google Scholar 

  • Budker VG, Godovikov AA, Naumova LP, Slepneva IA (1980) Interaction of polynucleotides with natural and model membranes. Nucleic Acids Res 7:2499–2515

    Article  Google Scholar 

  • Clausen-Schaumann H, Gaub HE (1999) DNA adsorption to laterally structured charged lipid membranes. Langmuir 15:8246–8825

    Article  CAS  Google Scholar 

  • Danev R, Nagayama K (2001) Transmission electron nmicroscopy with Zernike phase plate. Ultramicroscopy 88:243–252

    Article  PubMed  CAS  Google Scholar 

  • Danino D, Bernheim-Groswasser A, Talmon Y (2001) Digital cryogenic transmission electron microscopy: an advanced tool for direct imaging of complex fluids. Colloid Surface A 183–185:113–122

    Article  Google Scholar 

  • Ewert K, Evans HM, Ahmad A, Slack NL, Lin AJ, Martin-Herranz A, Safinya CR (2005) Lipoplex structures and their distinct cellular pathways. Adv Genet 53:119–155

    Article  PubMed  CAS  Google Scholar 

  • Frisken BJ, Asman C, Patty PJ (2000) Studies of vesicle extrusion. Langmuir 16:928–933

    Article  CAS  Google Scholar 

  • Gersanovski D, Colson P, Houssier C, Fredericq E (1985) Terbium(3+) as a probe of nucleic acids structure. Does it alter the DNA conformation in solution? Biochim Biophys Acta 824:313–323

    PubMed  CAS  Google Scholar 

  • Hayes ME, Gorelov AV, Dawson KA (2001) DNA inuduce PC liposomes fusion. Prog Colloid Polym Sci 118:243

    Article  CAS  Google Scholar 

  • Huebner S, Battersby BJ, Cevc G (1999) Lipid–DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J 76:3158–3166

    Article  PubMed  CAS  Google Scholar 

  • Inoko Y, Yamaguchi T, Furuya K, Mitsui T (1975) Effects of cations on dipalmitoyl phosphatidylcholine/cholesterol/water systems. Biochim Biophys Acta 413:24–32

    Article  PubMed  CAS  Google Scholar 

  • Kuvichkin VV (1983) Theoretical model of DNA–membrane contacts. Biofizika 28:771–775

    PubMed  CAS  Google Scholar 

  • Kuvichkin VV (1990) Ultrastructural study of DNA–liposomes–Mg2+ complexes. Biofizika 35:256–262

    PubMed  CAS  Google Scholar 

  • Kuvichkin VV (2002) DNA–lipid interactions in vitro and in vivo. Bioelectrochemistry 58:3–12

    Article  PubMed  CAS  Google Scholar 

  • Kuvichkin VV, Sukhomudrenko AG (1987) Interaction of natural and synthetic polynucleotides with liposomes in the presence of divalent cations. Biofizika 32:628–633

    PubMed  CAS  Google Scholar 

  • Kuvichkin VV, Volkova LA, Naryshkina EP, Isangalin FS (1989) 31PNMR and Mn2+-ESR study of complexes of DNA–liposomes. Biofizika 34:405–409

    CAS  Google Scholar 

  • Kuvichkin VV, Kuznetsova SM, Emeljanenko VI, Zhdanov RI, Petrov AI (1999) Calorimetric study of the complexes: polyA*polyU–phosphatidylcholine liposomes–Mg2+. Biofizika 44:430–435

    CAS  Google Scholar 

  • Malghani MS, Yang J (1998) Stable binding of DNA to zwitterionic lipid bilayers in aqueous solutions. J Phys Chem B 102:8930–8933

    Article  CAS  Google Scholar 

  • Manzoli FA, Capitani S, Mazzotti G, Barnabei O, Maraldi NM (1982) Role of chromatin phospholipids on template availability and ultrastructure of isolated nuclei. Adv Enzyme Regul 20:247–262

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin A, Grathwohl C, McLaughlin S (1978) The adsorption of divalent cations to phosphatidylcholine bilayer membranes. Biochim Biophys Acta 513:338–357

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Mulrine N, Gresalfi T, Vaio G, McLaughlin A (1981) Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol 77:445–473

    Article  PubMed  CAS  Google Scholar 

  • McManus J, Radler JO, Dawson AK (2003) Does calcium turn a zwitterionic lipid cationic? J Phys Chem B 107:9869–9875

    Article  CAS  Google Scholar 

  • Nagayama K, Danev R (2008) Phase contrast electron microscopy: development of thin-film phase plates and biological applications. Phil Trans R Soc Lond B Biol Sci 363:2153–2162

    Article  CAS  Google Scholar 

  • Safinya CR (2001) Srtucture of lipid–DNA complexes: supramolecular assembly and gene delivery. Curr Opin Struct Biol 11:440–448

    Article  PubMed  CAS  Google Scholar 

  • Schmutz M, Durand D, Debin A, Palvadeau Y, Etienne A, Thierry AR (1999) DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage. Proc Natl Acad Sci USA 96:1293–1298

    Article  Google Scholar 

  • Seelig J (1995) Metal ion interactions with lipids. In: Handbook of metal–ligand interactions in biological fluids, bioinorganic chemistry, vol 1, part 3, chapter 2, Sec. F. Marcel Dekker, New York, pp 698–706

  • Sennato S, Bordi F, Cametti C, Diociaiuti M, Malaspina P (2005) Charge patch attraction and reentrant condensation in DNA–liposome complexes. Biochim Biophys Acta 1714:11–24

    Article  PubMed  CAS  Google Scholar 

  • Shabarshina LI, Sukhorukov BI, Kuvichkin VV (1979) Infrared spectroscopic study of DNA–lipid interactions. DNA compacting on disperse particles. Biofizika 24:990–994

    Google Scholar 

  • Sukhorukov BI, Kuvichkin VV, Shabarchina LI (1980) Structure and function of DNA–membrane contact in cells. Biofizika 25:270–275

    PubMed  CAS  Google Scholar 

  • Taddei A (2007) Active genes at the nuclear pore complex. Curr Opin Cell Biol 19:305–310

    Article  PubMed  CAS  Google Scholar 

  • Topal MD, Fresco JR (1980) Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaired residues in nucleic acids. Biochemistry 19:5531–5537

    Article  PubMed  CAS  Google Scholar 

  • Uhrikova D, Hanulova M, Funari SS, Khusainova RS, Serxen F, Balgavy P (2005) The structure of DNA–DOPC aggregates formed in presence of calcium and magnesium ions: a small-angle synchrotron X-ray diffraction study. Biochim Biophys Acta 1713:15–28

    Article  PubMed  CAS  Google Scholar 

  • Viktorov AV, Grepachevsky AA, Bergelson LD (1984) DNA–phospholipids interaction. 31P NMR investigation. Bioorg Him (Moscow) 10:935–939

    CAS  Google Scholar 

  • Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116:255–264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily V. Kuvichkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuvichkin, V.V., Danev, R.S., Shigematsu, H. et al. DNA-Induced Aggregation and Fusion of Phosphatidylcholine Liposomes in the Presence of Multivalent Cations Observed by the Cryo-TEM Technique. J Membrane Biol 227, 95–103 (2009). https://doi.org/10.1007/s00232-008-9146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9146-0

Keywords

Navigation