Skip to main content
Log in

Involvement of Amino Acid 36 in TM1 in Voltage Sensitivity in Mouse Na+/Glucose Cotransporter SGLT1

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Human SGLT1 protein is an established sodium-glucose cotransporter. Despite widespread use of the mouse as a model organism, the mouse SGLT1 homologue has yet to be functionally characterized. Additionally, the crystal structure of a sugar transporter homologue, Vibrio SGLT, has recently been described, however, it offers limited information about the role of transmembrane segments outside of the core ligand binding domains. In particular, the amino acids in TM1 were not assigned in the structure. To examine the contribution of TM1 to the function of SGLT1, we have cloned and characterized the biophysical properties of SGLT1 from mouse, mSGLT1, and compared it to a clone containing an amino acid substitution in TM1, F36S. As predicted, both proteins formed functional Na+/sugar cotransporters, but F36S-mSGLT1 showed decreased rates of sugar uptake and decreased apparent affinities for both Na+ and sugar compared to mSGLT1. Analysis of pre-steady-state currents and comparison with the crystal structure of Vibrio SGLT provide plausible mechanisms to explain the differences in function of these two proteins. Our data suggest that amino acids in TM1, which are not involved in ligand binding and translocation pathways, significantly influence the functional properties of sodium-glucose carrier proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Birnir B, Loo DD, Wright EM (1991) Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine. Pflugers Arch 418:79–85

    Article  PubMed  CAS  Google Scholar 

  • Breyer MD, Tchekneva E, Qi Z, Takahashi T, Fogo AB, Harris RC (2007) Examining diabetic nephropathy through the lens of mouse genetics. Curr Diab Rep 7:459–466

    Article  PubMed  Google Scholar 

  • Díez-Sampedro A, Lostao MP, Wright EM, Hirayama BA (2000) Glycoside binding and translocation in Na(+)-dependent glucose cotransporters: comparison of SGLT1 and SGLT3. J Membr Biol 176:111–117

    Article  PubMed  Google Scholar 

  • Dyer J, Hosie KB, Shirazi-Beechey SP (1997) Nutrient regulation of human intestinal sugar transporter (SGLT1) expression. Gut 41:56–59

    Article  PubMed  CAS  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814

    Article  PubMed  CAS  Google Scholar 

  • Ferraris RP, Diamond JM (1993) Crypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters. Proc Natl Acad Sci USA 90:5868–5872

    Article  PubMed  CAS  Google Scholar 

  • Hardcastle J, Harwood MD, Taylor CJ (2004) Absorption of taurocholic acid by the ileum of normal and transgenic DeltaF508 cystic fibrosis mice. J Pharm Pharmacol 56:445–452

    Article  PubMed  CAS  Google Scholar 

  • Hirayama BA, Wong HC, Smith CD, Hagenbuch BA, Hediger MA, Wright EM (1991) Intestinal and renal Na+/glucose cotransporters share common structure. Am J Physiol 261:C296–C304

    PubMed  CAS  Google Scholar 

  • Hirayama BA, Lostao MP, Panayotova-Heiermann M, Loo DD, Turk E, Wright EM (1996) Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT–1). Am J Physiol 270:G919–G926

    PubMed  CAS  Google Scholar 

  • Ikeda TS, Hwang ES, Coady MJ, Hirayama BA, Hediger MA, Wright EM (1989) Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine. J Membr Biol 110:87–95

    Article  PubMed  CAS  Google Scholar 

  • Kimmich GA (1981) Intestinal absorption of sugar. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York

    Google Scholar 

  • Lam MM, O’Connor TP, Diamond J (2002) Loads, capacities and safety factors of maltase and the glucose transporter SGLT1 in mouse intestinal brush border. J Physiol 542:493–500

    Article  PubMed  CAS  Google Scholar 

  • Lescale-Matys L, Dyer J, Scott D, Freeman TC, Wright EM, Shirazi-Beechey SP (1993) Regulation of the ovine intestinal Na +/glucose co-transporter (SGLT1) is dissociated from mRNA abundance. Biochem J 291:435–440

    PubMed  CAS  Google Scholar 

  • Loo DD, Hazama A, Supplisson S, Turk E, Wright EM (1993) Relaxation kinetics of the Na+/glucose cotransporter. Proc Natl Acad Sci USA 90:5767–5771

    Article  PubMed  CAS  Google Scholar 

  • Loo DD, Hirayama BA, Gallardo EM, Lam JT, Turk E, Wright EM (1998) Conformational changes couple Na+ and glucose transport. Proc Natl Acad Sci USA 95:7789–7794

    Article  PubMed  CAS  Google Scholar 

  • Loo DD, Hirayama BA, Karakossian MH, Meinild AK, Wright EM (2006) Conformational dynamics of hSGLT1 during Na+/glucose cotransport. J Gen Physiol 128:701–720

    Article  PubMed  CAS  Google Scholar 

  • Lostao MP, Hirayama BA, Loo DD, Wright EM (1994) Phenylglucosides and the Na+/glucose cotransporter (SGLT1): analysis of interactions. J Membr Biol 142:161–170

    PubMed  CAS  Google Scholar 

  • Panayotova-Heiermann M, Loo DD, Lostao MP, Wright EM (1994) Sodium/D-glucose cotransporter charge movements involve polar residues. J Biol Chem 269:21016–21020

    PubMed  CAS  Google Scholar 

  • Panayotova-Heiermann M, Loo DD, Wright EM (1995) Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J Biol Chem 270:27099–27105

    Article  PubMed  CAS  Google Scholar 

  • Parent L, Supplisson S, Loo DD, Wright EM (1992) Electrogenic properties of the cloned Na+/glucose cotransporter. I. Voltage-clamp studies. J Membr Biol 125:49–62

    PubMed  CAS  Google Scholar 

  • Sandu C, Rexhepaj R, Grahammer F, McCormick JA, Henke G, Palmada M, Nammi S, Lang U, Metzger M, Just L, Skutella T, Dawson K, Wang J, Pearce D, Lang F (2005) Decreased intestinal glucose transport in the sgk3-knockout mouse. Pflugers Arch 451:437–444

    Article  PubMed  CAS  Google Scholar 

  • Shirazi-Beechey SP, Hirayama BA, Wang Y, Scott D, Smith MW, Wright EM (1991) Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol 437:699–708

    PubMed  CAS  Google Scholar 

  • Solberg DH, Diamond JM (1987) Comparison of different dietary sugars as inducers of intestinal sugar transporters. Am J Physiol 252:G574–G584

    PubMed  CAS  Google Scholar 

  • Tabatabai NM, Blumenthal SS, Lewand DL, Petering DH (2001) Differential regulation of mouse kidney sodium-dependent transporters mRNA by cadmium. Toxicol Appl Pharmacol 177:163–173

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Rebekah Denison for technical assistance and E. M. Wright, B. A. Hirayama, D. D. Loo, C. Grewer, and P. Larsson for comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Díez-Sampedro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díez-Sampedro, A. Involvement of Amino Acid 36 in TM1 in Voltage Sensitivity in Mouse Na+/Glucose Cotransporter SGLT1. J Membrane Biol 227, 57–66 (2009). https://doi.org/10.1007/s00232-008-9143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9143-3

Keywords

Navigation