Skip to main content
Log in

Block of Persistent Late Na+ Currents by Antidepressant Sertraline and Paroxetine

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Antidepressants, such as traditional tricyclic antidepressants (TCAs), are the first-line treatment for various pain syndromes. Available evidence indicates that TCAs may target Na+ channels for their analgesic action. In this report, we examined the effects of contemporary antidepressants sertraline and paroxetine on (1) neuronal Na+ channels expressed in GH3 cells and (2) muscle rNav1.4 Na+ channels heterologously expressed in Hek293t cells. Our results showed that both antidepressants blocked Na+ channels in a highly state-dependent manner. The 50% inhibitory concentrations (IC50) for sertraline and paroxetine ranged ∼18–28 μm for resting block and ∼2–8 μm for inactivated block of neuronal and rNav1.4 Na+ channels. Surprisingly, the IC50 values for both drugs were about 0.6–0.7 μm for the open channel block of persistent late Na+ currents generated through inactivation-deficient rNav1.4 mutant Na+ channels. For comparison, the open channel block in neuronal hNav1.7 counterparts yielded IC50 values around 0.3–0.4 μm for both drugs. Receptor mapping using fast inactivation-deficient rNav1.4-F1579A/K mutants with reduced affinities toward local anesthetics (LAs) and TCAs indicated that the F1579 residue is not involved in the binding of sertraline and paroxetine. Thus, sertraline and paroxetine are potent open channel blockers that target persistent late Na+ currents preferentially, but their block is not mediated via the phenylalanine residue at the known LA/TCA receptor site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldrich RW, Corey DP, Stevens CF (1983) A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 306:436–441

    Article  PubMed  CAS  Google Scholar 

  • Ansari A (2000) The efficacy of newer antidepressants in the treatment of chronic pain: a review of current literature. Harv Rev Psychiatry 7:257–277

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini RJ (2001) Drugs and the treatment of psychiatric disorders: depression and anxiety disorders. In: Hardman JG, Limbird LE, Gilman AG (eds) The pharmacological basis of therapeutics. McGraw-Hill, New York, pp 447–484

    Google Scholar 

  • Brau ME, Dreimann M, Olschewski A, Vogel W, Hempelmann G (2001) Effects of drugs used for neuropathic pain management on tetradotoxin-resistant Na+ currents in rat sensory neurons. Anesthesiology 94:137–144

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Mackie K (2001) Local anesthetics. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (eds) Goodman & Gilman’s The pharmacological basis of therapeutics. Macmillan, New York, pp 367–384

    Google Scholar 

  • Cota G, Armstrong CM (1989) Sodium channel gating in clonal pituitary cells: the inactivation step is not voltage dependent. J Gen Physiol 94:213–232

    Article  PubMed  CAS  Google Scholar 

  • Devor M, Seltzer Z (1999) Pathophysiology of damaged nerves in relation to chronic pain. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, New York, pp 129–164

    Google Scholar 

  • Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT (2006) Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain 8:315–324

    Article  PubMed  CAS  Google Scholar 

  • Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, Chen C, Chen X, Choo E, Cianfrogna J, Cox LM, Gibbs JP, Gibbs MA, Hatch H, Hop CE, Kasman IN, Laperle J, Liu J, Liu X, Logman M, Maclin D, Nedza FM, Nelson F, Olson E, Rahematpura S, Raunig D, Rogers S, Schmidt K, Spracklin DK, Szewc M, Troutman M, Tseng E, Tu M, Van Deusen JW, Venkatakrishnan K, Walens G, Wang EQ, Wong D, Yasgar AS, Zhang C (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33:165–174

    Article  PubMed  CAS  Google Scholar 

  • Gerner P, Wang GK (2006) Mechanisms of tricyclic antidepressants in pain modulation. In: Mao J (ed) Comparing preclinical studies and clinical pain management: lost in translation? Nova Science Publishers, Hauppauge, NY, pp 189–206

    Google Scholar 

  • Gonzalez-Viejo MA, Avellanet M, Hernandez-Morcuende MI (2005) A comparative study of fibromyalgia treatment: ultrasonography and physiotherapy versus sertraline treatment. Ann Readapt Med Phys 48:610–615

    PubMed  CAS  Google Scholar 

  • Grant AO, Chandra R, Keller C, Carboni M, Starmer CF (2000) Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cells. Biophys J 79:3019–3035

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty E, Neher ME, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391:85–100

    Article  CAS  Google Scholar 

  • Huang CJ, Harootunian A, Maher MP, Quan C, Raj CD, McCormack K, Numann R, Negulescu PA, Gonzalez JE (2006) Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential. Nat Biotechnol 24:439–446

    Article  PubMed  CAS  Google Scholar 

  • Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14:1084–1090

    PubMed  CAS  Google Scholar 

  • Masand PS, Narasimhan M, Patlak J (2006) Paroxetine for somatic pain associated with physical illness: a review. Prim Care Companion J Clin Psychiatry 8:122–130

    PubMed  Google Scholar 

  • Monks R, Merskey H (1999) Psychotropic drugs. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, New York, pp 1155–1186

    Google Scholar 

  • Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 101:12706–12711

    Article  PubMed  CAS  Google Scholar 

  • Nau C, Wang GK (2004) Interactions of local anesthetics with voltage-gated Na+ channels. J Membr Biol 201:1–8

    Article  PubMed  CAS  Google Scholar 

  • Pancrazio JJ, Kamatchi GL, Roscoe AK, Lynch C (1998) Inhibition of neuronal Na+ channels by antidepressant drugs. J Pharmacol Exp Ther 284:208–214

    PubMed  CAS  Google Scholar 

  • Ramos E, O’Leary ME (2004) State-dependent trapping of flecainide in the cardiac sodium channel. J Physiol 560:37–49

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J (2003) Topical and peripherally acting analgesics. Pharmacol Rev 55:1–20

    Article  PubMed  CAS  Google Scholar 

  • Vega AV, Espinaosa JL, Lopez-Dominguez AM, Lopez-Santiago LF, Navarrete A, Cota G (2003) L-type calcium channel activation up-regulates the mRNAs for two different sodium channel alpha subunits (Nav1.2 and Nav1.3) in rat pituitary GH3 cells. Brain Res Mol Brain Res 116:115–125

    Article  PubMed  CAS  Google Scholar 

  • Wang GK, Russell C, Wang SY (2003a) State-dependent block of wild-type and inactivation-deficient Na+ channels by flecainide. J Gen Physiol 122:365–374

    Article  PubMed  CAS  Google Scholar 

  • Wang S-Y, Bonner K, Russell C, Wang GK (2003b) Tryptophan scanning of D1S6 and D4S6 C-termini in voltage-gated sodium channels. Biophys J 85:911–920

    PubMed  CAS  Google Scholar 

  • Wang GK, Russell C, Wang S-Y (2004a) State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain 110:166–174

    Article  PubMed  CAS  Google Scholar 

  • Wang S-Y, Mitchell J, Moczydlowski E, Wang GK (2004b) Block of inactivation-deficient Na+ channels by local anesthetics in stably transfected mammalian cells: evidence for drug binding along the activation pathway. J Gen Physiol 124:691–701

    Article  PubMed  CAS  Google Scholar 

  • Wood JN, Boorman JP, Okuse K, Baker MD (2004) Voltage-gated sodium channels and pain pathways. J Neurobiol 61:55–71

    Article  PubMed  CAS  Google Scholar 

  • Wright SN, Wang SY, Xiao YF, Wang GK (1999) State-dependent cocaine block of sodium channel isoforms, chimeras, and channels coexpressed with the beta1 subunit. Biophys J 76:233–245

    PubMed  CAS  Google Scholar 

  • Zhou Y, MacKinnon R (2004) Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry 43:4978–4982

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (GM48090). We are grateful to Dr. Edward Moczydlowski for the HEK293 cell line expressing wild-type rNav1.4 channels and Dr. Norbert Klugbauer for the hNav1.7 clone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ging Kuo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G.K., Mitchell, J. & Wang, SY. Block of Persistent Late Na+ Currents by Antidepressant Sertraline and Paroxetine. J Membrane Biol 222, 79–90 (2008). https://doi.org/10.1007/s00232-008-9103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9103-y

Keywords

Navigation