Skip to main content
Log in

Altered KCNQ3 Potassium Channel Function Caused by the W309R Pore-Helix Mutation Found in Human Epilepsy

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The second tryptophan (W) residue of the conserved WW motif in the pore helix of many K+ channel subunit is thought to interact with the tyrosine (Y) residues of the selectivity filter. A missense mutation causing the replacement of the corresponding residues with an arginine (W309R) occurs in KCNQ3 subunits forming part of M-channels. In this study, we examined the functional consequences of the W309R mutation in heterogously expressed KCNQ channels. Homomeric KCNQ3W309R channels lacked KCNQ currents. Heteromeric KCNQ2/KCNQ3W309R channels displayed a dominant-negative suppression of current and a significant modification in gating properties when compared with heteromeric KCNQ3/KCNQ2 channels mimicking the M-channels. A three-dimensional homology model in the W309R mutant indicated that the R side chain of pore helices is too far from the Y side chain of the selectivity filter to interact via hydrogen bonds with each other and stabilize the pore structure. Collectively, the present results suggest that the second W residues of pore helices and their chemical interaction with the Y residues of the selectivity filter are essential for normal K+ channel function. This pore-helix mutation, if occurs in the brain M channels, could thus lead to a channel dysfunction sufficient to trigger epileptic hyperexcitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bassi MT, Balottin U, Panzeri C, Piccinelli P, Castaldo P, Barrese V, Soldovieri MV, Miceli F, Colombo M, Bresolin N, Borgatti R, Taglialatela M (2005) Functional analysis of novel KCNQ2 and KCNQ3 gene variants found in a large pedigree with benign familial neonatal convulsions (BFNC). Neurogenetics 6:185–193

    Article  PubMed  Google Scholar 

  • Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 283:673–676

    Article  PubMed  CAS  Google Scholar 

  • Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nature Genet 18:53–55

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Hirose S, Zenri F, Akiyoshi H, Fukuma G, Iwata H, Inoue T, Yonetani M, Tsutsumi M, Muranaka H, Kurokawa T, Hanai T, Wada K, Kaneko S, Mitsudome A (2000) A novel mutation of KCNQ3 (C925T–>C) in a Japanese family with benign familial neonatal convulsions. Ann Neurol 47:822–826

    Article  PubMed  CAS  Google Scholar 

  • Kananura C, Biervert C, Hechenberger M, Engels H, Steinlein OK (2000) The new voltage gated potassium channel KCNQ5 and neonatal convulsions. Neuroreport 11:2063–2067

    Article  PubMed  CAS  Google Scholar 

  • Kanki H, Kupershmidt S, Yang T, Wells S, Roden DM (2004) A structural requirement for processing the cardiac K+ channel KCNQ1. J Biol Chem 279:33976–33983

    Article  PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    Article  PubMed  CAS  Google Scholar 

  • Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, Steinmeyer K (2000) Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem 275:22395–22400

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Shioya T, Yasukochi M, Imanaga I, Uehara A (2005) Dysfunction by a missense mutation of voltage-gated K channel KCNQ3. J Physiol Sci Suppl 55:S126

    Google Scholar 

  • Ohya S, Sergeant GP, Greenwood IA, Horowitz B (2003) Molecular variants of KCNQ channels expressed in murine portal vein myocytes: a role in delayed rectifier current. Circ Res 92:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BC, Kubisch C, Stein V, Jentsch TJ (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396:687–690

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095

    Article  PubMed  CAS  Google Scholar 

  • Schwake M, Pusch M, Kharkovets T, Jentsch TJ (2000) Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem 275:13343–13348

    Article  PubMed  CAS  Google Scholar 

  • Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Delmas P, Buckley NJ, London B, Brown DA (1999) Two types of K+ channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci 19:7742–7756

    PubMed  CAS  Google Scholar 

  • Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J BFNC Physician Consortium, Anderson VE, Sanguinetti MC, Leppert MF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 126:2726–2737

    Article  PubMed  Google Scholar 

  • Soldovieri MV, Castaldo P, Iodice L, Miceli F, Barrese V, Bellini G, Miraglia del Giudice E, Pascotto A, Bonatti S, Annunziato L, Taglialatela M (2006) Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal conclusions. J Biol Chem 280:418–428

    Google Scholar 

  • Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–1893

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Hamachi and M. Yonetani for technical assistance and Drs. S. Matsuoka, T. Ishii and N. Aoki for valuable comments. This work was supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Uehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uehara, A., Nakamura, Y., Shioya, T. et al. Altered KCNQ3 Potassium Channel Function Caused by the W309R Pore-Helix Mutation Found in Human Epilepsy. J Membrane Biol 222, 55–63 (2008). https://doi.org/10.1007/s00232-008-9097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9097-5

Keywords

Navigation