Skip to main content
Log in

Charges in the Cytoplasmic Pore Control Intrinsic Inward Rectification and Single-Channel Properties in Kir1.1 and Kir2.1 Channels

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

An E224G mutation of the Kir2.1 channel generates intrinsic inward rectification and single-channel fluctuations in the absence of intracellular blockers. In this study, we showed that positively charged residues H226, R228 and R260, near site 224, regulated the intrinsic inward rectification and single-channel properties of the E224G mutant. By carrying out systematic mutations, we found that the charge effect on the intrinsic inward rectification and single-channel conductance is consistent with a long-range electrostatic mechanism. A Kir1.1 channel where the site equivalent to E224 in the Kir2.1 channel is a glycine residue does not show inward rectification or single-channel fluctuations. The G223K and N259R mutations of the Kir1.1 channel induced intrinsic inward rectification and reduced the single-channel conductance but did not generate large open-channel fluctuations. Substituting the cytoplasmic pore of the E224G mutant into the Kir1.1 channel induced open-channel fluctuations and intrinsic inward rectification. The single-channel conductance of the E224G mutant showed inward rectification. Also, a voltage-dependent gating mechanism decreased open probability during depolarization and contributed to the intrinsic inward rectification in the E224G mutant. In addition to an electrostatic effect, a close interaction of K+ with channel pore may be required for generating open-channel fluctuations in the E224G mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alagem N, Dvir M, Reuveny E (2001) Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. J Physiol 534:381–393

    Article  PubMed  CAS  Google Scholar 

  • Brelidze TI, Niu X, Magleby KL (2003) A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc Natl Acad Sci USA 100:9017–9022

    Article  PubMed  CAS  Google Scholar 

  • Chandler WK, Hodgkin AL, Meves H (1965) The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J Physiol 180:821–836

    PubMed  CAS  Google Scholar 

  • Chang HK, Yeh SH, Shieh RC (2005) A ring of negative charges in the intracellular vestibule of Kir2.1 channel modulates K+ permeation. Biophys J 88:243–254

    Article  PubMed  CAS  Google Scholar 

  • Choe H, Sackin H, Palmer LG (2000) Permeation properties of inward-rectifier potassium channels and their molecular determinants. J Gen Physiol 115:391–404

    Article  PubMed  CAS  Google Scholar 

  • Dani JA (1986) Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations Biophys J 49:607–618

    Article  PubMed  CAS  Google Scholar 

  • Doyle AD, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Kubo Y (2006) Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1. J Gen Physiol 127:401–419

    Article  PubMed  CAS  Google Scholar 

  • Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359

    Article  PubMed  CAS  Google Scholar 

  • Green WN, Weiss LB, Andersen OS (1987) Batrachotoxin-modified sodium channels in planar lipid bilayers. Ion permeation and block. J Gen Physiol 89:841–872

    CAS  Google Scholar 

  • Guo D, Lu Z (2002) IRK1 inward rectifier K+ channels exhibit no intrinsic rectification. J Gen Physiol 120:539–551

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Heher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 391:85–100

    Article  CAS  Google Scholar 

  • Hilgemann DW (1995) The giant membrane patch. In: Sakmann B, Neher E (eds), Single-Channel Recording. New York: Plenum Press, pp 307–328

    Google Scholar 

  • Hille B (2001) Potassium channels and chloride channels. In: Ionic Channels of Excitable Membranes. Sinauer, MA: Sunderland, pp 115–139

  • Hille B, Woodhull AM, Shapiro BI (1975) Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Philos Trans R Soc Lond B Biol Sci 270:301–318

    Article  PubMed  CAS  Google Scholar 

  • Ho K, CG Nichols, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Article  PubMed  CAS  Google Scholar 

  • Imoto K, Busch C, Sakmann B, Mishina M, Konno T, Nakai J, Bujo H, Mori Y, Fukuda K, Numa S (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Mitsuiye T, Noma A, Takano M (1989) The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. J Physiol 419:297–320

    PubMed  CAS  Google Scholar 

  • Kell MJ, DeFelice LJ (1988) Surface charge near the cardiac inward-rectifier channel measured from single-channel conductance. J Membr Biol 102:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kienker P, Tomaselli G, Jurman M, Yellen G (1994) Conductance mutations of the nicotinic acetylcholine receptor do not act by a simple electrostatic mechanism. Biophys J 66:325–334

    PubMed  CAS  Google Scholar 

  • Kubo Y, Baldwin T, Jan Y, Jan L (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Murata Y (2001) Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J Physiol 531:645–660

    Article  PubMed  CAS  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  PubMed  CAS  Google Scholar 

  • Lin CW, Chen TY (2003) Probing the pore of ClC-0 by substituted cysteine accessibility method using methane thiosulfonate reagents. J Gen Physiol 122:147–159

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, MacKinnon R (1994) Electrostatic tuning of Mg2+ affinity in an inward- rectifier K+ channel. Nature 371:243–246

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R, Latorre R, Miller C (1989) Role of surface electrostatics in the operation of a high- conductance Ca2+-activated K+ channel. Biochemistry 28:8092–8099

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Oishi K, Omori K (2003) Voltage-dependent gating and block by internal spermine of the murine inwardly rectifying K+ channel, Kir2.1. J Physiol 548:361–371

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159

    Article  PubMed  CAS  Google Scholar 

  • Meltzer RH, Lurtz MM, Wensel TG, Pedersen SE (2006) Nicotinic acetylcholine receptor channel electrostatics determined by diffusion-enhanced luminescence energy transfer. Biophys J 91:1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Nimigean CM, Chappie JS, Miller C (2003) Electrostatic tuning of ion conductance in potassium channels. Biochemistry 42:9263–9268

    Article  PubMed  CAS  Google Scholar 

  • Pegan S, Arrabit C, Zhou W, Kwiatkowski W, Collins A, Slesinger PA, Choe S (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287

    Article  PubMed  CAS  Google Scholar 

  • Shieh RC, Chang JC, Arreola J (1998) Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes. Biophys J 75:2313–2322

    PubMed  CAS  Google Scholar 

  • Shieh RC, John SA, Lee JK, Weiss JN (1996) Inward rectification of the IRK1 channel expressed in Xenopus oocytes: effects of intracellular pH reveal an intrinsic gating mechanism. J Physiol 494(Pt 2):363–376

    PubMed  CAS  Google Scholar 

  • Shioya T, Matsuda H, Noma A (1993) Fast and slow blockades of the inward-rectifier K+ channel by external divalent cations in guinea-pig cardiac myocytes. Pfluegers Arch 422:427–435

    Article  CAS  Google Scholar 

  • So I, Ashmole I, Hoh H, Park C, Spencer P, Leyland M, Stanfield P (2003) Intrinsic gating in inward rectifier potassium channels (Kir2.1) with low polyamine affinity generated by site directed mutagenesis. Korean J Physiol Pharmacol 7:131–142

    CAS  Google Scholar 

  • Stauffer DA, Karlin A (1994) Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 33:6840–6849

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela M, Wible BA, Caporaso R, Brown AM (1994) Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264:844–847

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg C (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends of internal magnesium ions. Proc Natl Acad Sci USA 84:2560–2564

    Article  PubMed  CAS  Google Scholar 

  • Xie LH, John SA, Ribalet B, Weiss JN (2004) Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel. J Physiol 561:159–168

    Article  PubMed  CAS  Google Scholar 

  • Xie LH, John SA, Weiss JN (2002) Spermine block of the strong inward rectifier potassium channel Kir2.1: dual roles of surface charge screening and pore block. J Gen Physiol 120:53–66

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995) Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Yeh SH, Chang HK, Shieh RC (2005) Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in Kir2.1 channels. J Gen Physiol 126:551–562

    Article  PubMed  CAS  Google Scholar 

  • Zhang YY, Robertson JL, Gray DA, Palmer LG (2004) Carboxy-terminal determinants of conductance in inward-rectifier K channels. J Gen Physiol 124:729–739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Drs. Lily Jan and James N. Weiss for kindly providing the Kir2.1 and Kir1.1 clones, respectively. We are grateful to Dr. Tom Barkas for reading and editing the manuscript. This work was supported by the Academia Sinica and by the National Science Council of Taiwan (grants 94–2320-B-001–025 and 95–2320-B001–011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Chi Shieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, HK., Yeh, SH. & Shieh, RC. Charges in the Cytoplasmic Pore Control Intrinsic Inward Rectification and Single-Channel Properties in Kir1.1 and Kir2.1 Channels. J Membrane Biol 215, 181–193 (2007). https://doi.org/10.1007/s00232-007-9017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9017-0

Keywords

Navigation