Skip to main content
Log in

Structure and Function of Cationic Amino Acid Transporters (CATs)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The CAT proteins (CAT for cationic amino acid transporter) are amongst the first mammalian amino acid transporters identified on the molecular level and seem to be the major entry path for cationic amino acids in most cells. However, CAT proteins mediate also efflux of their substrates and thus may also deplete cells from cationic amino acids under certain circumstances. The CAT proteins form a subfamily of the solute carrier family 7 (SLC7) that consists of four confirmed transport proteins for cationic amino acids: CAT-1 (SLC7A1), CAT-2A (SLC7A2A), CAT-2B (SLC7A2B), and CAT-3 (SLC7A3). SLC7A4 and SLC7A14 are two related proteins with yet unknown function. One focus of this review lies on structural and functional differences between the different CAT isoforms. The expression of the CAT proteins is highly regulated on the level of transcription, mRNA stability, translation and subcellular localization. Recent advances toward a better understanding of these mechanisms provide a second focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

CAT:

cationic amino acid transporter, prefix h, r, m: human, rat and mouse, respectively

HAT:

heteromeric amino acid transporter

DC:

dendritic cell

HEK:

human embryonic kidney cells

IRES:

internal ribosomal entry sequence

NOS:

nitric oxide synthase, prefix e, and i: endothelial and inducible isoform, respectively

PAEC:

porcine aortic endothelial cells

PKC:

protein kinase C

SLC:

solute carrier family

TM:

transmembrane domain

References

  • Albritton L.M., Bowcock A.M., Eddy R.L., Morton C., Farrerro L.A., Cavalli-Sforza L.L.,Shows T., Cunningham J.M. 1993a. The human cationic amino acid transporter: physical and genetic mapping to 13q12-q14. Genomics 12:430–434

    Article  Google Scholar 

  • Albritton L.M., Kim J.W., Tseng L., Cunningham J.M. 1993b. Envelope-binding domain inthe cationic amino acid transporter determines the host range of ecotropic murineretroviruses. J. Virol. 67:2091–2096

    CAS  Google Scholar 

  • Albritton L.M., Tseng L., Scadden D., Cunningham J.M. 1989. A putative murine ecotropicretrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57:659–666

    Article  PubMed  CAS  Google Scholar 

  • Bauch C., Forster N., Loffing-Cueni D., Summa V., Verrey F. 2003. Functional cooperation of epithelial heteromeric amino acid transporters expressed in madindarby canine kidney cells. J. Biol. Chem. 278:1316–1322

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya S.N., Habermacher R., Martine U., Closs E.I., Filipowicz W. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Bogle R.G., Baydoun A.R., Pearson J.D., Mann G.E. 1996. Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J. Physiol. 490:229–241

    PubMed  CAS  Google Scholar 

  • Borsani G., Bassi M.T., Sperandeo M.P., De Grandi A., Buoninconti A., Riboni M.,Manzoni M., Incerti B., Pepe A., Andria G., Ballabio A., Sebastio G. 1999. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nature Genetics. Mar. 21:297–301

    Article  CAS  Google Scholar 

  • Broer A., Wagner C.A., Lang F., Broer S. 2000. The heterodimeric amino acid transporter4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem. J. 349:787–795

    PubMed  CAS  Google Scholar 

  • Bussolati O., Laris P.C., Nucci F.A., Dall′Asta V., Franchi-Gazzola R., Guidotti G.G., Gazzola G.C. 1989. Influx of L-arginine is an indicator of membrane potential in human fibroblasts. Am. J. Physiol. 256:C930-C935

    PubMed  CAS  Google Scholar 

  • Bussolati O., Laris P.C., Nucci F.A., Dall′Asta V., Longo N., Guidotti G.G., Gazzola G.C. 1987. Dependence of L-arginine accumulation on membrane potential in cultured human fibroblasts. Am. J. Physiol. 253:C391–C397

    PubMed  CAS  Google Scholar 

  • Cariappa R.,Heath-Monnig E., Furesz T.C., Kamath S.G., Smith C.H. 2002. Stable polarized expression of hCAT-1 in an epithelial cell line. J. Membrane Biol. 186:23–30

    Article  CAS  Google Scholar 

  • Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C., Mason, W.S., Moloshok, T., Bort, R., Zaret, K.S., Taylor, J.M. 2004. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology 1:106–113

    PubMed  CAS  Google Scholar 

  • Closs E.I. 2002. Expression, regulation and function of carrier proteins for cationic amino acids. Curr, Opin. Nephrol. Hypertens. 11:99–107

    Article  PubMed  Google Scholar 

  • Closs E.I., Albritton L.M., Kim J.W., Cunningham J.M. 1993a. Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J. Biol. Chem. 268:7538–7544

    CAS  Google Scholar 

  • Closs E.I., Borel Rinkes I.H., Bader A., Yarmush M.L., Cunningham J.M. 1993b. Retroviral infection and expression of cationic amino acid transporters in rodent hepatocytes. J. Virol. 67:2097–2102

    CAS  Google Scholar 

  • Closs E.I., Gräf P., Habermeier A., Cunningham J.M., Förstermann U. 1997. Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: Three related carriers with distinct transport properties. Biochemistry 36:6462–6468

    Article  PubMed  CAS  Google Scholar 

  • Closs E.I., Lyons C.R., Kelly C., Cunningham J.M. 1993c. Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of adomain that determines the transport properties of the MCAT proteins. J Biol Chem 268:20796–20800

    CAS  Google Scholar 

  • Closs, E.I., Rotmann, A. 2005. Cationic amino acid transporter CAT-1 AfCS-Nature Molecule Pages:doi:10.1038/mp.a002772.01

  • Closs E.I., Simon A., Vekony N., Rotmann A. 2004. Plasma membrane transporters forarginine. J Nutr 134:2752S-2759S; discussion 2765S-2767S

    PubMed  CAS  Google Scholar 

  • Deves R., Angelo S., Chavez P. 1993. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J Physiol 468:753–766

    PubMed  CAS  Google Scholar 

  • Deves R., Boyd C.A. 1998. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  CAS  Google Scholar 

  • Deves R., Chavez P., Boyd C.A. 1992. Identification of a new transport system (y+L) inhuman erythrocytes that recognizes lysine and leucine with high affinity. J Physiol Lond 454:491–501

    PubMed  CAS  Google Scholar 

  • Durante W., Liao L., Iftikhar I., Cheng K., Schafer A.I. 1996. Platelet-derived growth factor regulates vascular smooth muscle cell proliferation by inducing cationic amino acid transporter gene expression. J Biol Chem 271:11838–11843

    Article  PubMed  CAS  Google Scholar 

  • Durante W., Liao L., Peyton K.J., Schafer A.I. 1997. Lysophosphatidylcholine regulates cationic amino acid transport and metabolism in vascular smooth muscle cells. Role in polyamine biosynthesis. J Biol Chem. 272:30154–30159

    Article  PubMed  CAS  Google Scholar 

  • Durante W., Liao L., Peyton K.J., Schafer A.I. 1998. Thrombin stimulates vascular smooth muscle cell polyamine synthesis by inducing cationic amino acid transporter and ornithine decarboxylase gene expression. Circ Res 83:217–223

    PubMed  CAS  Google Scholar 

  • Durante W., Liao L., Reyna S.V., Peyton K.J., Schafer A.I. 2001. Transforming growth factor-beta(1) stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 103:1121–1127

    PubMed  CAS  Google Scholar 

  • Feliubadalo L., Font M., Purroy J., Rousaud F., Estivill X., Nunes V., Golomb E.,Centola M., Aksentijevich I., Kreiss Y., Goldman B., Pras M., Kastner D.L., Pras E., Gasparini P., Bisceglia L., Beccia E., Gallucci M., de Sanctis L., Ponzone A.,Rizzoni G.F., Zelante L., Bassi M.T., George A.L., Manzoni M., De Grandi A.,Riboni M., Endsley J.K., Ballabio A., Borsani G., Reig N., Fernandez E., Estevez R., Pineda M., Torrents D., Camps M., Lloberas J., Zorzano A., Palacin M. 1999. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (b(o,+)AT)of rBAT. Nature Genetics. Sep 23:52–57

    CAS  Google Scholar 

  • Fernandez J., Bode B., Koromilas A., Diehl J.A., Krukovets I., Snider M.D., Hatzoglou M. 2002a. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J. Biol. Chem. 277:11780–11787

    Article  CAS  Google Scholar 

  • Fernandez J., Lopez A.B., Wang C., Mishra R., Zhou L., Yaman I., Snider M.D.,Hatzoglou M. 2003. Transcriptional control of the arginine/lysine transporter, cat-1, by physiological stress. J Biol Chem 278:50000–50009

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J., Yaman I., Huang C., Liu H., Lopez A.B., Komar A.A., Caprara M.G.,Merrick W.C., Snider M.D., Kaufman R.J., Lamers W.H., Hatzoglou M. 2005. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17:405–416

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J., Yaman I., Merrick W.C., Koromilas A., Wek R.C., Sood R., Hensold J., Hatzoglou M. 2002b. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem 277:2050–2058

    Article  CAS  Google Scholar 

  • Fernandez J., Yaman I., Mishra R., Merrick W.C., Snider M.D., Lamers W.H., Hatzoglou M. 2001. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276:12285–12291

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J., Yaman I., Sarnow P., Snider M.D., Hatzoglou M. 2002c. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem 277:19198–205

    Article  CAS  Google Scholar 

  • Flores C., Rojas S., Aguayo C., Parodi J., Mann G., Pearson J.D., Casanello P., Sobrevia L. 2003. Rapid stimulation of L-arginine transport by D-glucose involves p42/44(mapk) and nitric oxide in human umbilical vein endothelium. Circ Res 92:64–72

    Article  PubMed  CAS  Google Scholar 

  • Gazzola G.C., Franchi R., Saibene V., Ronchi P., Guidotti G.G. 1972. Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids. Biochim Biophys Acta 266:407–421

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, M., Flores, C., Pearson, J.D., Casanello, P., Sobrevia, L. 2004. Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters-1 and -2 and membrane hyperpolarization in human umbilical vein endothelial cells. Pfluegers Arch. 448:383–394

    CAS  Google Scholar 

  • Gräf P., Förstermann U., Closs E.I. 2001. The transport activity of the human cationic amino acid transporter hCAT-1 is downregulated by activation of protein kinase C. Br J Pharmacol 132:1193–1200

    Article  PubMed  Google Scholar 

  • Habermeier A., Wolf S., Martine U., Graf P., Closs E.I. 2003. Two amino acid residues determine the low substrate affinity of human cationic amino acid transporter-2A. J. Biol. Chem. 278:19492–19499

    Article  PubMed  CAS  Google Scholar 

  • Hatzoglou M., Fernandez J., Yaman I., Closs E. 2004. Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu. Rev. Nutr. 24:377–399

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa H., Ninomiya H., Sawamura T., Sugimoto Y., Ichikawa A., Fujiwara K.,Masaki T. 1999. Neuron-specific expression of cationic amino acid transporter 3 in the adult rat brain. Brain. Res. 838:158–165

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa H., Sawamura T., Kobayashi S., Ninomiya H., Miwa S., Masaki T. 1997.Cloning and characterization of a brain-specific cationic amino acid transporter. J. Biol. Chem. 272:8717–8722

    Article  PubMed  CAS  Google Scholar 

  • Im W.B., Christensen H.N. 1976. Heterogeneity of histidine transport in the Ehrlich cell. Biochim. Biophys. Acta. 455:144151

    Google Scholar 

  • Ito K., Groudine M. 1997. A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J. Biol. Chem. 272:26780–26786

    Article  PubMed  CAS  Google Scholar 

  • Kakoki M., Wang W., Mattson D.L. 2002. Cationic amino acid transport in the renal medulla and blood pressure regulation. Hypertension 39:287–292

    Article  PubMed  CAS  Google Scholar 

  • Kakuda D.K., Finley K.D., Dionne V.E., MacLeod C.L. 1993. Two distinct gene products mediate y+ type cationic amino acid transport in Xenopus oocytes and show different tissue expression patterns. Transgene 1:91–101

    Google Scholar 

  • Kakuda D.K., Finley K.D., Maruyama M., MacLeod C.L. 1998. Stress differentially induces cationic amino acid transporter gene expression. Biochim. Biophys. Acta. 1414:75–84

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh M.P. 1993. Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry 32:5781–5785

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh M.P., Wang H., Zhang Z., Zhang W., Wu Y.N., Dechant E., North R.A.,Kabat D. 1994. Control of cationic amino acid transport and retroviral receptor functions in a membrane protein family. J. Biol. Chem. 269:15445–15450

    PubMed  CAS  Google Scholar 

  • Kikuta K., Sawamura T., Miwa S., Hashimoto N., Masaki T. 1998. High-affinity arginine transport of bovine aortic endothelial cells is impaired by lysophosphatidylcholine. Circ. Res. 83:1088–1096

    PubMed  CAS  Google Scholar 

  • Kim J.W., Closs E.I., Albritton L.M., Cunningham J.M. 1991. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728

    Article  PubMed  CAS  Google Scholar 

  • Kim J.W., Cunningham J.M. 1993. N-linked glycosylation of the receptor for murine ecotropic retroviruses is altered in virus-infected cells. J. Biol. Chem. 268:16316–16320

    PubMed  CAS  Google Scholar 

  • Kizhatil K., Albritton L.M. 2002. System y+ localizes to different membrane subdomains in the basolateral plasma membrane of epithelial cells. Am. J. Physiol. 283:C1784–C1794

    CAS  Google Scholar 

  • Krotova K.Y., Zharikov S.I., Block E.R. 2003. Classical isoforms of PKC as regulators ofCAT-1 transporter activity in pulmonary artery endothelial cells. Am. J. Physiol. 284:L1037–L1044

    CAS  Google Scholar 

  • Lee S., Zhao Y., Anderson W.F. 1999. Receptor-mediated Moloney murine leukemia virus entry can occur independently of the clathrin-coated-pit-mediated endocytic pathway. J. Virol. 73:5994–6005

    PubMed  CAS  Google Scholar 

  • Lu X., Silver J. 2000. Ecotropic murine leukemia virus receptor is physically associated with caveolin and membrane rafts. Virology 276:251–258

    Article  PubMed  CAS  Google Scholar 

  • MacLeod C.L. 1996. Regulation of cationic amino acid transporter (CAT) gene expression. Biochem. Soc. Trans. 24:846–852

    PubMed  CAS  Google Scholar 

  • Mann G.E., Yudilevich D.L., Sobrevia L. 2003. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol. Rev. 83:183–252

    PubMed  CAS  Google Scholar 

  • Manner C.K., Nicholson B., MacLeod C.L. 2003. CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes. J. Neurochem. 85:476–482

    PubMed  CAS  Google Scholar 

  • Masuda M., Kakushima N., Wilt S.G., Ruscetti S.K., Hoffman P.M., Iwamoto A. 1999. Analysis of receptor usage by ecotropic murine retroviruses, using green fluorescent protein-tagged cationic amino acid transporters. J. Virol. 73:8623–8629

    PubMed  CAS  Google Scholar 

  • McDonald K.K., Zharikov S., Block E.R., Kilberg M.S. 1997. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J. Biol. Chem. 272:31213–31216

    Article  PubMed  CAS  Google Scholar 

  • Morris S.M. Jr. 2006. Arginine: beyond protein. Am. J. Clin. Nutr. 83:508S–512S

    PubMed  CAS  Google Scholar 

  • Muller A.J., Prendergast G.C. 2005. Marrying immunotherapy with chemotherapy: why say IDO? Cancer. Res. 65:8065–8068

    Article  PubMed  CAS  Google Scholar 

  • Nicholson B., Manner C.K., Kleeman J., MacLeod C.L. 2001. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J. Biol. Chem. 276:15881–15885

    Article  PubMed  CAS  Google Scholar 

  • Nicholson B., Manner C.K., MacLeod C.L. 2002. Cat2 L-arginine transporter-deficient fibroblasts can sustain nitric oxide production. Nitric. Oxide. 7:236–243

    Article  PubMed  CAS  Google Scholar 

  • Nicholson B., Sawamura T., Masaki T., MacLeod C.L. 1998. Increased Cat3-mediated cationic amino acid transport functionally compensates in Cat1 knockout cell lines. J. Biol. Chem. 273:14663–14666

    Article  PubMed  CAS  Google Scholar 

  • Ou W., Silver J. 2003. Role of a conserved amino-terminal sequence in the ecotropic MLV receptor mCAT1. Virology 308:101–113

    Article  PubMed  CAS  Google Scholar 

  • Perkins C.P., Mar V., Shutter J.R., del Castillo J., Danilenko D.M., Medlock E.S.,Ponting I.L., Graham M., Stark K.L., Zuo Y., Cunningham J.M., Bosselman R.A. 1997. Anemia and perinatal death result from loss of the murine ecotropic retrovirusreceptor mCAT-1. Genes. Dev. 11:914–925

    PubMed  CAS  Google Scholar 

  • Pfeiffer R., Loffing J., Rossier G., Bauch C., Meier C., Eggermann T., Loffing-Cueni D., Kuhn L.C., Verrey F. 1999a. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol. Biol. Cell. 10:4135–47

    CAS  Google Scholar 

  • Pfeiffer R., Rossier G., Spindler B., Meier C., Kuhn L., Verrey F. 1999b. Amino acid transport of y(+)L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. Embo. J. 18:49–57

    Article  CAS  Google Scholar 

  • Prasanth K.V., Prasanth S.G., Xuan Z., Hearn S., Freier S.M., Bennett C.F., Zhang M.Q.,Spector D.L. 2005. Regulating gene expression through RNA nuclear retention. Cell 123:249–263

    Article  PubMed  CAS  Google Scholar 

  • Racke K., Hey C., Mossner J., Hammermann R., Stichnote C., Wessler I. 1998. Activation of L-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages. J. Physiol. 511:813–825

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg, M.E., Doepker, M.P., Lewkowich, I.P., Chiaramonte, M.G., Stringer, K.F., Finkelman, F.D., Macleod, C.L., Ellies, L.G., Zimmermann, N. 2006. Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung. Proc. Natl. Acad. Sci. USA. 106:14895–14900

    Article  Google Scholar 

  • Rotmann A., Closs E.I., Liewald J.F., Nawrath H. 2004a. Intracellular accumulation of L-Arg, kinetics of transport, and potassium leak conductance in oocytes from Xenopus laevis expressing hCAT-1, hCAT-2A, and hCAT-2B. Biochim. Biophys. Acta. 1660:138–143

    Article  CAS  Google Scholar 

  • Rotmann A., Strand D., Martine U., Closs E.I. 2004b. Protein kinase C activation promotes the internalization of the human cationic amino acid transporter hCAT-1. A new regulatory mechanism for hCAT-1 activity. J. Biol. Chem. 279:54185–54192

    Article  CAS  Google Scholar 

  • Rotmann A., Vekony N., Gassner D., Niegisch G., Strand D., Martine U., Closs E.I. 2006. Activation of classical protein kinase C reduces the expression of human cationic amino acid transporter 3 (hCAT-3) in the plasma membrane. Biochem. J. 395:117–123

    Article  PubMed  CAS  Google Scholar 

  • San Martin R., Sobrevia L. 2006. Gestational diabetes and the adenosine/l-Arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta 27:1–10

    Article  PubMed  CAS  Google Scholar 

  • Sobrevia L., Cesare P., Yudilevich D.L., Mann G.E. 1995. Diabetes-induced activation of system y+ and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J. Physiol. 489:183–192

    PubMed  CAS  Google Scholar 

  • Sobrevia L., Yudilevich D.L., Mann G.E. 1997. Activation of A2-purinoceptors byadenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J. Physiol. 499:135–140

    PubMed  CAS  Google Scholar 

  • Torrents D., Estevez R., Pineda M., Fernandez E., Lloberas J., Shi Y.B., Zorzano A., Palacin M. 1998. Identification and characterization of a membrane protein (Y(+)L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y(+)L -A candidate gene for lysinuric protein intolerance. J. Biol. Chem. 273:32437–32445

    Article  PubMed  CAS  Google Scholar 

  • Van Winkle L.J., Campione A.L., Gorman J.M. 1988. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocytes by a shared system and by processes which distinguish between these substrates. J. Biol. Chem. 263:3150–3163

    PubMed  CAS  Google Scholar 

  • Vekony N., Wolf S., Boissel J.P., Gnauert K., Closs E.I. 2001. Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. Biochemistry 40:12387–12394

    Article  PubMed  CAS  Google Scholar 

  • Verrey F., Closs E.I., Wagner C.A., Palacin M., Endou H., Kanai Y. 2004. CATs and HATs: the SLC7 family of amino acid transporters. Pfluegers Arch 447:532–542

    Article  CAS  Google Scholar 

  • Wang H., Kavanaugh M.P., Kabat D. 1994. A critical site in the cell surface receptor for ecotropic murine retroviruses required for amino acid transport but not for viral reception. Virology 202:1058–1060

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Kavanaugh M.P., North R.A., Kabat D. 1991. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Klamo E., Kuhmann S.E., Kozak S.L., Kavanaugh M.P., Kabat D. 1996. Modulation of ecotropic murine retroviruses by N-linked glycosylation of the cell surface receptor amino acid transporter. J. Virol. 70:6884–6891

    PubMed  CAS  Google Scholar 

  • White M.F., Christensen H.N. 1982. The two-way flux of cationic amino acids across theplasma membrane of mammalian cells is largely explained by a single transport system. J. Biol. Chem. 257:10069–10080

    PubMed  CAS  Google Scholar 

  • White M.F., Gazzola G.C., Christensen H.N. 1982. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. J. Biol. Chem. 257:44439

    Google Scholar 

  • Wolf S., Janzen A., Vekony N., Martine U., Strand D., Closs E.I. 2002. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem. J. 364:767–775

    Article  PubMed  CAS  Google Scholar 

  • Woodard M.H., Dunn W.A., Laine R.O., Malandro M., Mcmahon R., Simell O., Block E.R., Kilberg M.S. 1994. Plasma membrane clustering of system y(+) (CAT-1)amino acid transporter as detected by immunohistochemistry -Rapid communication. Am. J. Physiol. 266:E817–E824

    PubMed  CAS  Google Scholar 

  • Yaman I., Fernandez J., Liu H., Caprara M., Komar A.A., Koromilas A.E., Zhou L., Snider M.D., Scheuner D., Kaufman R.J., Hatzoglou M. 2003. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113:519–531

    Article  PubMed  CAS  Google Scholar 

  • Yaman I., Fernandez J., Sarkar B., Schneider R.J., Snider M.D., Nagy L.E., Hatzoglou M. 2002. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J. Biol. Chem. 277:41539–41546

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto T., Yoshimoto E., Meruelo D. 1991. Molecular cloning and characterization of anovel human gene homologous to the murine ecotropic retroviral receptor. Virology 185:10–17

    Article  PubMed  CAS  Google Scholar 

  • Zharikov S.I., Block E.R. 2000. Association of L-arginine transporters with fodrin: implications for hypoxic inhibition of arginine uptake. Am. J. Physiol. 278:L111–L117

    CAS  Google Scholar 

  • Zharikov S.I., Krotova K.Y., Belayev L., Block E.R. 2004. Pertussis toxin activates L-arginine uptake in pulmonary endothelial cells through downregulation of PKC-alpha activity. Am. J. Physiol. 286:L974–L983

    CAS  Google Scholar 

  • Zharikov S.I., Sigova A.A., Chen S., Bubb M.R., Block E.R. 2001. Cytoskeletal regulation of the L-arginine/NO pathway in pulmonary artery endothelial cells. Am. J. Physiol. 280:L465–L473

    CAS  Google Scholar 

Download references

Acknowledgement

The work in the authors laboratory is supported by Grants Cl 100/4-1 and the Collaborative Research Center SFB 553 (Project B4) from the Deutsche Forschungsgemeinschaft, Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.I. Closs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Closs, E., Boissel, JP., Habermeier, A. et al. Structure and Function of Cationic Amino Acid Transporters (CATs). J Membrane Biol 213, 67–77 (2006). https://doi.org/10.1007/s00232-006-0875-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0875-7

Keywords

Navigation