Advertisement

The Journal of Membrane Biology

, Volume 213, Issue 2, pp 67–77 | Cite as

Structure and Function of Cationic Amino Acid Transporters (CATs)

  • E.I. Closs
  • J.-P. Boissel
  • A. Habermeier
  • A. Rotmann
Article

Abstract

The CAT proteins (CAT for cationic amino acid transporter) are amongst the first mammalian amino acid transporters identified on the molecular level and seem to be the major entry path for cationic amino acids in most cells. However, CAT proteins mediate also efflux of their substrates and thus may also deplete cells from cationic amino acids under certain circumstances. The CAT proteins form a subfamily of the solute carrier family 7 (SLC7) that consists of four confirmed transport proteins for cationic amino acids: CAT-1 (SLC7A1), CAT-2A (SLC7A2A), CAT-2B (SLC7A2B), and CAT-3 (SLC7A3). SLC7A4 and SLC7A14 are two related proteins with yet unknown function. One focus of this review lies on structural and functional differences between the different CAT isoforms. The expression of the CAT proteins is highly regulated on the level of transcription, mRNA stability, translation and subcellular localization. Recent advances toward a better understanding of these mechanisms provide a second focus of this review.

Keywords

Amino acid starvation Amino acid responsive element Cationic amino acid transporter IRES micro RNA Nitric oxide Paraspeckles SLC7 System y+ 

Abbreviations

CAT

cationic amino acid transporter, prefix h, r, m: human, rat and mouse, respectively

HAT

heteromeric amino acid transporter

DC

dendritic cell

HEK

human embryonic kidney cells

IRES

internal ribosomal entry sequence

NOS

nitric oxide synthase, prefix e, and i: endothelial and inducible isoform, respectively

PAEC

porcine aortic endothelial cells

PKC

protein kinase C

SLC

solute carrier family

TM

transmembrane domain

Notes

Acknowledgement

The work in the authors laboratory is supported by Grants Cl 100/4-1 and the Collaborative Research Center SFB 553 (Project B4) from the Deutsche Forschungsgemeinschaft, Bonn, Germany.

References

  1. Albritton L.M., Bowcock A.M., Eddy R.L., Morton C., Farrerro L.A., Cavalli-Sforza L.L.,Shows T., Cunningham J.M. 1993a. The human cationic amino acid transporter: physical and genetic mapping to 13q12-q14. Genomics 12:430–434CrossRefGoogle Scholar
  2. Albritton L.M., Kim J.W., Tseng L., Cunningham J.M. 1993b. Envelope-binding domain inthe cationic amino acid transporter determines the host range of ecotropic murineretroviruses. J. Virol. 67:2091–2096Google Scholar
  3. Albritton L.M., Tseng L., Scadden D., Cunningham J.M. 1989. A putative murine ecotropicretrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57:659–666PubMedCrossRefGoogle Scholar
  4. Bauch C., Forster N., Loffing-Cueni D., Summa V., Verrey F. 2003. Functional cooperation of epithelial heteromeric amino acid transporters expressed in madindarby canine kidney cells. J. Biol. Chem. 278:1316–1322PubMedCrossRefGoogle Scholar
  5. Bhattacharyya S.N., Habermacher R., Martine U., Closs E.I., Filipowicz W. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124PubMedCrossRefGoogle Scholar
  6. Bogle R.G., Baydoun A.R., Pearson J.D., Mann G.E. 1996. Regulation of L-arginine transport and nitric oxide release in superfused porcine aortic endothelial cells. J. Physiol. 490:229–241PubMedGoogle Scholar
  7. Borsani G., Bassi M.T., Sperandeo M.P., De Grandi A., Buoninconti A., Riboni M.,Manzoni M., Incerti B., Pepe A., Andria G., Ballabio A., Sebastio G. 1999. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nature Genetics. Mar. 21:297–301CrossRefGoogle Scholar
  8. Broer A., Wagner C.A., Lang F., Broer S. 2000. The heterodimeric amino acid transporter4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem. J. 349:787–795PubMedGoogle Scholar
  9. Bussolati O., Laris P.C., Nucci F.A., Dall′Asta V., Franchi-Gazzola R., Guidotti G.G., Gazzola G.C. 1989. Influx of L-arginine is an indicator of membrane potential in human fibroblasts. Am. J. Physiol. 256:C930-C935PubMedGoogle Scholar
  10. Bussolati O., Laris P.C., Nucci F.A., Dall′Asta V., Longo N., Guidotti G.G., Gazzola G.C. 1987. Dependence of L-arginine accumulation on membrane potential in cultured human fibroblasts. Am. J. Physiol. 253:C391–C397PubMedGoogle Scholar
  11. Cariappa R.,Heath-Monnig E., Furesz T.C., Kamath S.G., Smith C.H. 2002. Stable polarized expression of hCAT-1 in an epithelial cell line. J. Membrane Biol. 186:23–30CrossRefGoogle Scholar
  12. Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C., Mason, W.S., Moloshok, T., Bort, R., Zaret, K.S., Taylor, J.M. 2004. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology 1:106–113PubMedGoogle Scholar
  13. Closs E.I. 2002. Expression, regulation and function of carrier proteins for cationic amino acids. Curr, Opin. Nephrol. Hypertens. 11:99–107PubMedCrossRefGoogle Scholar
  14. Closs E.I., Albritton L.M., Kim J.W., Cunningham J.M. 1993a. Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J. Biol. Chem. 268:7538–7544Google Scholar
  15. Closs E.I., Borel Rinkes I.H., Bader A., Yarmush M.L., Cunningham J.M. 1993b. Retroviral infection and expression of cationic amino acid transporters in rodent hepatocytes. J. Virol. 67:2097–2102Google Scholar
  16. Closs E.I., Gräf P., Habermeier A., Cunningham J.M., Förstermann U. 1997. Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: Three related carriers with distinct transport properties. Biochemistry 36:6462–6468PubMedCrossRefGoogle Scholar
  17. Closs E.I., Lyons C.R., Kelly C., Cunningham J.M. 1993c. Characterization of the third member of the MCAT family of cationic amino acid transporters. Identification of adomain that determines the transport properties of the MCAT proteins. J Biol Chem 268:20796–20800Google Scholar
  18. Closs, E.I., Rotmann, A. 2005. Cationic amino acid transporter CAT-1 AfCS-Nature Molecule Pages:doi:10.1038/mp.a002772.01Google Scholar
  19. Closs E.I., Simon A., Vekony N., Rotmann A. 2004. Plasma membrane transporters forarginine. J Nutr 134:2752S-2759S; discussion 2765S-2767SPubMedGoogle Scholar
  20. Deves R., Angelo S., Chavez P. 1993. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J Physiol 468:753–766PubMedGoogle Scholar
  21. Deves R., Boyd C.A. 1998. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545PubMedGoogle Scholar
  22. Deves R., Chavez P., Boyd C.A. 1992. Identification of a new transport system (y+L) inhuman erythrocytes that recognizes lysine and leucine with high affinity. J Physiol Lond 454:491–501PubMedGoogle Scholar
  23. Durante W., Liao L., Iftikhar I., Cheng K., Schafer A.I. 1996. Platelet-derived growth factor regulates vascular smooth muscle cell proliferation by inducing cationic amino acid transporter gene expression. J Biol Chem 271:11838–11843PubMedCrossRefGoogle Scholar
  24. Durante W., Liao L., Peyton K.J., Schafer A.I. 1997. Lysophosphatidylcholine regulates cationic amino acid transport and metabolism in vascular smooth muscle cells. Role in polyamine biosynthesis. J Biol Chem. 272:30154–30159PubMedCrossRefGoogle Scholar
  25. Durante W., Liao L., Peyton K.J., Schafer A.I. 1998. Thrombin stimulates vascular smooth muscle cell polyamine synthesis by inducing cationic amino acid transporter and ornithine decarboxylase gene expression. Circ Res 83:217–223PubMedGoogle Scholar
  26. Durante W., Liao L., Reyna S.V., Peyton K.J., Schafer A.I. 2001. Transforming growth factor-beta(1) stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Circulation 103:1121–1127PubMedGoogle Scholar
  27. Feliubadalo L., Font M., Purroy J., Rousaud F., Estivill X., Nunes V., Golomb E.,Centola M., Aksentijevich I., Kreiss Y., Goldman B., Pras M., Kastner D.L., Pras E., Gasparini P., Bisceglia L., Beccia E., Gallucci M., de Sanctis L., Ponzone A.,Rizzoni G.F., Zelante L., Bassi M.T., George A.L., Manzoni M., De Grandi A.,Riboni M., Endsley J.K., Ballabio A., Borsani G., Reig N., Fernandez E., Estevez R., Pineda M., Torrents D., Camps M., Lloberas J., Zorzano A., Palacin M. 1999. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (b(o,+)AT)of rBAT. Nature Genetics. Sep 23:52–57Google Scholar
  28. Fernandez J., Bode B., Koromilas A., Diehl J.A., Krukovets I., Snider M.D., Hatzoglou M. 2002a. Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J. Biol. Chem. 277:11780–11787CrossRefGoogle Scholar
  29. Fernandez J., Lopez A.B., Wang C., Mishra R., Zhou L., Yaman I., Snider M.D.,Hatzoglou M. 2003. Transcriptional control of the arginine/lysine transporter, cat-1, by physiological stress. J Biol Chem 278:50000–50009PubMedCrossRefGoogle Scholar
  30. Fernandez J., Yaman I., Huang C., Liu H., Lopez A.B., Komar A.A., Caprara M.G.,Merrick W.C., Snider M.D., Kaufman R.J., Lamers W.H., Hatzoglou M. 2005. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17:405–416PubMedCrossRefGoogle Scholar
  31. Fernandez J., Yaman I., Merrick W.C., Koromilas A., Wek R.C., Sood R., Hensold J., Hatzoglou M. 2002b. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J Biol Chem 277:2050–2058CrossRefGoogle Scholar
  32. Fernandez J., Yaman I., Mishra R., Merrick W.C., Snider M.D., Lamers W.H., Hatzoglou M. 2001. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276:12285–12291PubMedCrossRefGoogle Scholar
  33. Fernandez J., Yaman I., Sarnow P., Snider M.D., Hatzoglou M. 2002c. Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem 277:19198–205CrossRefGoogle Scholar
  34. Flores C., Rojas S., Aguayo C., Parodi J., Mann G., Pearson J.D., Casanello P., Sobrevia L. 2003. Rapid stimulation of L-arginine transport by D-glucose involves p42/44(mapk) and nitric oxide in human umbilical vein endothelium. Circ Res 92:64–72PubMedCrossRefGoogle Scholar
  35. Gazzola G.C., Franchi R., Saibene V., Ronchi P., Guidotti G.G. 1972. Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids. Biochim Biophys Acta 266:407–421PubMedCrossRefGoogle Scholar
  36. Gonzalez, M., Flores, C., Pearson, J.D., Casanello, P., Sobrevia, L. 2004. Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters-1 and -2 and membrane hyperpolarization in human umbilical vein endothelial cells. Pfluegers Arch. 448:383–394Google Scholar
  37. Gräf P., Förstermann U., Closs E.I. 2001. The transport activity of the human cationic amino acid transporter hCAT-1 is downregulated by activation of protein kinase C. Br J Pharmacol 132:1193–1200PubMedCrossRefGoogle Scholar
  38. Habermeier A., Wolf S., Martine U., Graf P., Closs E.I. 2003. Two amino acid residues determine the low substrate affinity of human cationic amino acid transporter-2A. J. Biol. Chem. 278:19492–19499PubMedCrossRefGoogle Scholar
  39. Hatzoglou M., Fernandez J., Yaman I., Closs E. 2004. Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu. Rev. Nutr. 24:377–399PubMedCrossRefGoogle Scholar
  40. Hosokawa H., Ninomiya H., Sawamura T., Sugimoto Y., Ichikawa A., Fujiwara K.,Masaki T. 1999. Neuron-specific expression of cationic amino acid transporter 3 in the adult rat brain. Brain. Res. 838:158–165PubMedCrossRefGoogle Scholar
  41. Hosokawa H., Sawamura T., Kobayashi S., Ninomiya H., Miwa S., Masaki T. 1997.Cloning and characterization of a brain-specific cationic amino acid transporter. J. Biol. Chem. 272:8717–8722PubMedCrossRefGoogle Scholar
  42. Im W.B., Christensen H.N. 1976. Heterogeneity of histidine transport in the Ehrlich cell. Biochim. Biophys. Acta. 455:144151Google Scholar
  43. Ito K., Groudine M. 1997. A new member of the cationic amino acid transporter family is preferentially expressed in adult mouse brain. J. Biol. Chem. 272:26780–26786PubMedCrossRefGoogle Scholar
  44. Kakoki M., Wang W., Mattson D.L. 2002. Cationic amino acid transport in the renal medulla and blood pressure regulation. Hypertension 39:287–292PubMedCrossRefGoogle Scholar
  45. Kakuda D.K., Finley K.D., Dionne V.E., MacLeod C.L. 1993. Two distinct gene products mediate y+ type cationic amino acid transport in Xenopus oocytes and show different tissue expression patterns. Transgene 1:91–101Google Scholar
  46. Kakuda D.K., Finley K.D., Maruyama M., MacLeod C.L. 1998. Stress differentially induces cationic amino acid transporter gene expression. Biochim. Biophys. Acta. 1414:75–84PubMedCrossRefGoogle Scholar
  47. Kavanaugh M.P. 1993. Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry 32:5781–5785PubMedCrossRefGoogle Scholar
  48. Kavanaugh M.P., Wang H., Zhang Z., Zhang W., Wu Y.N., Dechant E., North R.A.,Kabat D. 1994. Control of cationic amino acid transport and retroviral receptor functions in a membrane protein family. J. Biol. Chem. 269:15445–15450PubMedGoogle Scholar
  49. Kikuta K., Sawamura T., Miwa S., Hashimoto N., Masaki T. 1998. High-affinity arginine transport of bovine aortic endothelial cells is impaired by lysophosphatidylcholine. Circ. Res. 83:1088–1096PubMedGoogle Scholar
  50. Kim J.W., Closs E.I., Albritton L.M., Cunningham J.M. 1991. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728PubMedCrossRefGoogle Scholar
  51. Kim J.W., Cunningham J.M. 1993. N-linked glycosylation of the receptor for murine ecotropic retroviruses is altered in virus-infected cells. J. Biol. Chem. 268:16316–16320PubMedGoogle Scholar
  52. Kizhatil K., Albritton L.M. 2002. System y+ localizes to different membrane subdomains in the basolateral plasma membrane of epithelial cells. Am. J. Physiol. 283:C1784–C1794Google Scholar
  53. Krotova K.Y., Zharikov S.I., Block E.R. 2003. Classical isoforms of PKC as regulators ofCAT-1 transporter activity in pulmonary artery endothelial cells. Am. J. Physiol. 284:L1037–L1044Google Scholar
  54. Lee S., Zhao Y., Anderson W.F. 1999. Receptor-mediated Moloney murine leukemia virus entry can occur independently of the clathrin-coated-pit-mediated endocytic pathway. J. Virol. 73:5994–6005PubMedGoogle Scholar
  55. Lu X., Silver J. 2000. Ecotropic murine leukemia virus receptor is physically associated with caveolin and membrane rafts. Virology 276:251–258PubMedCrossRefGoogle Scholar
  56. MacLeod C.L. 1996. Regulation of cationic amino acid transporter (CAT) gene expression. Biochem. Soc. Trans. 24:846–852PubMedGoogle Scholar
  57. Mann G.E., Yudilevich D.L., Sobrevia L. 2003. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol. Rev. 83:183–252PubMedGoogle Scholar
  58. Manner C.K., Nicholson B., MacLeod C.L. 2003. CAT2 arginine transporter deficiency significantly reduces iNOS-mediated NO production in astrocytes. J. Neurochem. 85:476–482PubMedGoogle Scholar
  59. Masuda M., Kakushima N., Wilt S.G., Ruscetti S.K., Hoffman P.M., Iwamoto A. 1999. Analysis of receptor usage by ecotropic murine retroviruses, using green fluorescent protein-tagged cationic amino acid transporters. J. Virol. 73:8623–8629PubMedGoogle Scholar
  60. McDonald K.K., Zharikov S., Block E.R., Kilberg M.S. 1997. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J. Biol. Chem. 272:31213–31216PubMedCrossRefGoogle Scholar
  61. Morris S.M. Jr. 2006. Arginine: beyond protein. Am. J. Clin. Nutr. 83:508S–512SPubMedGoogle Scholar
  62. Muller A.J., Prendergast G.C. 2005. Marrying immunotherapy with chemotherapy: why say IDO? Cancer. Res. 65:8065–8068PubMedCrossRefGoogle Scholar
  63. Nicholson B., Manner C.K., Kleeman J., MacLeod C.L. 2001. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J. Biol. Chem. 276:15881–15885PubMedCrossRefGoogle Scholar
  64. Nicholson B., Manner C.K., MacLeod C.L. 2002. Cat2 L-arginine transporter-deficient fibroblasts can sustain nitric oxide production. Nitric. Oxide. 7:236–243PubMedCrossRefGoogle Scholar
  65. Nicholson B., Sawamura T., Masaki T., MacLeod C.L. 1998. Increased Cat3-mediated cationic amino acid transport functionally compensates in Cat1 knockout cell lines. J. Biol. Chem. 273:14663–14666PubMedCrossRefGoogle Scholar
  66. Ou W., Silver J. 2003. Role of a conserved amino-terminal sequence in the ecotropic MLV receptor mCAT1. Virology 308:101–113PubMedCrossRefGoogle Scholar
  67. Perkins C.P., Mar V., Shutter J.R., del Castillo J., Danilenko D.M., Medlock E.S.,Ponting I.L., Graham M., Stark K.L., Zuo Y., Cunningham J.M., Bosselman R.A. 1997. Anemia and perinatal death result from loss of the murine ecotropic retrovirusreceptor mCAT-1. Genes. Dev. 11:914–925PubMedGoogle Scholar
  68. Pfeiffer R., Loffing J., Rossier G., Bauch C., Meier C., Eggermann T., Loffing-Cueni D., Kuhn L.C., Verrey F. 1999a. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol. Biol. Cell. 10:4135–47Google Scholar
  69. Pfeiffer R., Rossier G., Spindler B., Meier C., Kuhn L., Verrey F. 1999b. Amino acid transport of y(+)L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. Embo. J. 18:49–57CrossRefGoogle Scholar
  70. Prasanth K.V., Prasanth S.G., Xuan Z., Hearn S., Freier S.M., Bennett C.F., Zhang M.Q.,Spector D.L. 2005. Regulating gene expression through RNA nuclear retention. Cell 123:249–263PubMedCrossRefGoogle Scholar
  71. Racke K., Hey C., Mossner J., Hammermann R., Stichnote C., Wessler I. 1998. Activation of L-arginine transport by protein kinase C in rabbit, rat and mouse alveolar macrophages. J. Physiol. 511:813–825PubMedCrossRefGoogle Scholar
  72. Rothenberg, M.E., Doepker, M.P., Lewkowich, I.P., Chiaramonte, M.G., Stringer, K.F., Finkelman, F.D., Macleod, C.L., Ellies, L.G., Zimmermann, N. 2006. Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung. Proc. Natl. Acad. Sci. USA. 106:14895–14900CrossRefGoogle Scholar
  73. Rotmann A., Closs E.I., Liewald J.F., Nawrath H. 2004a. Intracellular accumulation of L-Arg, kinetics of transport, and potassium leak conductance in oocytes from Xenopus laevis expressing hCAT-1, hCAT-2A, and hCAT-2B. Biochim. Biophys. Acta. 1660:138–143CrossRefGoogle Scholar
  74. Rotmann A., Strand D., Martine U., Closs E.I. 2004b. Protein kinase C activation promotes the internalization of the human cationic amino acid transporter hCAT-1. A new regulatory mechanism for hCAT-1 activity. J. Biol. Chem. 279:54185–54192CrossRefGoogle Scholar
  75. Rotmann A., Vekony N., Gassner D., Niegisch G., Strand D., Martine U., Closs E.I. 2006. Activation of classical protein kinase C reduces the expression of human cationic amino acid transporter 3 (hCAT-3) in the plasma membrane. Biochem. J. 395:117–123PubMedCrossRefGoogle Scholar
  76. San Martin R., Sobrevia L. 2006. Gestational diabetes and the adenosine/l-Arginine/nitric oxide (ALANO) pathway in human umbilical vein endothelium. Placenta 27:1–10PubMedCrossRefGoogle Scholar
  77. Sobrevia L., Cesare P., Yudilevich D.L., Mann G.E. 1995. Diabetes-induced activation of system y+ and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J. Physiol. 489:183–192PubMedGoogle Scholar
  78. Sobrevia L., Yudilevich D.L., Mann G.E. 1997. Activation of A2-purinoceptors byadenosine stimulates L-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J. Physiol. 499:135–140PubMedGoogle Scholar
  79. Torrents D., Estevez R., Pineda M., Fernandez E., Lloberas J., Shi Y.B., Zorzano A., Palacin M. 1998. Identification and characterization of a membrane protein (Y(+)L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y(+)L -A candidate gene for lysinuric protein intolerance. J. Biol. Chem. 273:32437–32445PubMedCrossRefGoogle Scholar
  80. Van Winkle L.J., Campione A.L., Gorman J.M. 1988. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocytes by a shared system and by processes which distinguish between these substrates. J. Biol. Chem. 263:3150–3163PubMedGoogle Scholar
  81. Vekony N., Wolf S., Boissel J.P., Gnauert K., Closs E.I. 2001. Human cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral tissues. Biochemistry 40:12387–12394PubMedCrossRefGoogle Scholar
  82. Verrey F., Closs E.I., Wagner C.A., Palacin M., Endou H., Kanai Y. 2004. CATs and HATs: the SLC7 family of amino acid transporters. Pfluegers Arch 447:532–542CrossRefGoogle Scholar
  83. Wang H., Kavanaugh M.P., Kabat D. 1994. A critical site in the cell surface receptor for ecotropic murine retroviruses required for amino acid transport but not for viral reception. Virology 202:1058–1060PubMedCrossRefGoogle Scholar
  84. Wang H., Kavanaugh M.P., North R.A., Kabat D. 1991. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731PubMedCrossRefGoogle Scholar
  85. Wang H., Klamo E., Kuhmann S.E., Kozak S.L., Kavanaugh M.P., Kabat D. 1996. Modulation of ecotropic murine retroviruses by N-linked glycosylation of the cell surface receptor amino acid transporter. J. Virol. 70:6884–6891PubMedGoogle Scholar
  86. White M.F., Christensen H.N. 1982. The two-way flux of cationic amino acids across theplasma membrane of mammalian cells is largely explained by a single transport system. J. Biol. Chem. 257:10069–10080PubMedGoogle Scholar
  87. White M.F., Gazzola G.C., Christensen H.N. 1982. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. J. Biol. Chem. 257:44439Google Scholar
  88. Wolf S., Janzen A., Vekony N., Martine U., Strand D., Closs E.I. 2002. Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity. Biochem. J. 364:767–775PubMedCrossRefGoogle Scholar
  89. Woodard M.H., Dunn W.A., Laine R.O., Malandro M., Mcmahon R., Simell O., Block E.R., Kilberg M.S. 1994. Plasma membrane clustering of system y(+) (CAT-1)amino acid transporter as detected by immunohistochemistry -Rapid communication. Am. J. Physiol. 266:E817–E824PubMedGoogle Scholar
  90. Yaman I., Fernandez J., Liu H., Caprara M., Komar A.A., Koromilas A.E., Zhou L., Snider M.D., Scheuner D., Kaufman R.J., Hatzoglou M. 2003. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell 113:519–531PubMedCrossRefGoogle Scholar
  91. Yaman I., Fernandez J., Sarkar B., Schneider R.J., Snider M.D., Nagy L.E., Hatzoglou M. 2002. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J. Biol. Chem. 277:41539–41546PubMedCrossRefGoogle Scholar
  92. Yoshimoto T., Yoshimoto E., Meruelo D. 1991. Molecular cloning and characterization of anovel human gene homologous to the murine ecotropic retroviral receptor. Virology 185:10–17PubMedCrossRefGoogle Scholar
  93. Zharikov S.I., Block E.R. 2000. Association of L-arginine transporters with fodrin: implications for hypoxic inhibition of arginine uptake. Am. J. Physiol. 278:L111–L117Google Scholar
  94. Zharikov S.I., Krotova K.Y., Belayev L., Block E.R. 2004. Pertussis toxin activates L-arginine uptake in pulmonary endothelial cells through downregulation of PKC-alpha activity. Am. J. Physiol. 286:L974–L983Google Scholar
  95. Zharikov S.I., Sigova A.A., Chen S., Bubb M.R., Block E.R. 2001. Cytoskeletal regulation of the L-arginine/NO pathway in pulmonary artery endothelial cells. Am. J. Physiol. 280:L465–L473Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • E.I. Closs
    • 1
  • J.-P. Boissel
    • 1
  • A. Habermeier
    • 1
  • A. Rotmann
    • 1
  1. 1.Department of PharmacologyJohannes Gutenberg UniversityMainzGermany

Personalised recommendations