Skip to main content
Log in

Association of Renal Na,K-ATPase α-Subunit with the β- and γ-Subunits Based on Cryoelectron Microscopy

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Na,K-ATPase transports Na+ and K+ across cell membranes and consists of α- and β-subunits. Na,K-ATPase also associates with small FXYD proteins that regulate the activity of the pump. We have used cryoelectron microscopy of two-dimensional crystals including data to 8 Å resolution to determine the three-dimensional (3-D) structure of renal Na,K-ATPase containing FXYD2, the γ-subunit. A homology model for the α-subunit was calculated from a Ca2+-ATPase structure and used to locate the additional β- and γ-subunits present in the 3-D map of Na,K-ATPase. Based on the 3-D map, the β-subunit is located close to transmembrane helices M8 and M10 and the γ-subunit is adjacent to helices M2 and M9 of the α-subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Axelsen K.B., Palmgren M.G. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46:84–101

    Article  PubMed  CAS  Google Scholar 

  • Cantley L.C. Jr., Cantley L.G., Josephson L. 1978. A characterization of vanadate interactions with the (Na,K)-ATPase. J. Biol. Chem. 253:7361–7368

    PubMed  CAS  Google Scholar 

  • CCP4. 1994. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50:760–763

    Article  Google Scholar 

  • Colonna T.E., Huynh L., Fambrough D.M. 1997. Subunit interactions in the Na,K-ATPase explored with the yeast two-hybrid system. J. Biol. Chem. 272:12366–12372

    Article  PubMed  CAS  Google Scholar 

  • Crowther R.A., Henderson R., Smith J.M. 1996. MRC image processing programs. J. Struct. Biol. 116:9–16

    Article  PubMed  CAS  Google Scholar 

  • Donnet C., Arystarkhova E., Sweadner K.J. 2001. Thermal denaturation of the Na,K-ATPase provides evidence for α-α oligomeric interaction and γ subunit association with the C-terminal domain. J. Biol. Chem. 276:7357–7365

    Article  PubMed  CAS  Google Scholar 

  • Forbush B., 3rd, Kaplan J.H., Hoffman J.F. 1978. Characterization of a new photoaffinity derivative of ouabain: Labeling of the large polypeptide and of a proteolipid component of the Na,K-ATPase. Biochemistry 17:3667–3676

    Article  PubMed  CAS  Google Scholar 

  • Franzin C.M., Choi J., Zhai D., Reed J.C., Marassi F.M. 2004. Structural studies of apoptosis and ion transport regulatory proteins in membranes. Magn. Reson. Chem. 42:172–179

    Article  PubMed  CAS  Google Scholar 

  • Füzesi M., Gottschalk K.-E., Lindzen M., Shainskaya A., Küster B., Garty H., Karlish S.J.D. 2005. Covalent cross-links between the γ subunit (FXYD2) and α and β subunits of Na,K-ATPase. J. Biol. Chem. 280:18291–18301

    Article  PubMed  CAS  Google Scholar 

  • Geering K. 2001. The functional role of β subunits in oligomeric P-Type ATPases. J. Bioenerg. Biomembr. 33:425–438

    Article  PubMed  CAS  Google Scholar 

  • Håkansson K.O. 2003. The crystallographic structure of Na,K-ATPase N-domain at 2.6 Å resolution. J. Mol. Biol. 332:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Hasler U., Crambert G., Horisberger J.-D., Geering K. 2001. Structural and functional features of the transmembrane domain of the Na,K-ATPase β subunit revealed by tryptophan scanning. J. Biol. Chem. 276:16356–16364

    Article  PubMed  CAS  Google Scholar 

  • Hebert H., Purhonen P., Vorum H., Thomsen K., Maunsbach A.B. 2001. Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals. J. Mol. Biol. 314:479–494

    Article  PubMed  CAS  Google Scholar 

  • Hilge M., Siegal G., Vuister G.W., Güntert P., Gloor S.M., Abrahams J.P. 2003. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Nat. Struct. Biol. 6:468–474

    Article  CAS  Google Scholar 

  • Ivanov A.V., Modyanov N.N., Askari A. 2002. Role of the self-association of β subunits in the oligomeric structure of Na+/K+-ATPase. Biochem. J. 364:293–299

    PubMed  CAS  Google Scholar 

  • Ivanov A., Zhao H., Modyanov N.N. 2000. Packing of the transmembrane helices of Na,K-ATPase: Direct contact between β-subunit and H8 segment of a α-subunit revealed by oxidative cross-linking. Biochemistry 39:9778–9785

    Article  PubMed  CAS  Google Scholar 

  • Jensen A.-M.L., Sørensen T.L.-M., Olesen C., Møller J.V., Nissen P. 2006. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25:2305–2314

    Article  PubMed  CAS  Google Scholar 

  • Jones T.A., Zou J.Y., Cowan S.W., Kjeldgaard M. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47:110–119

    Article  PubMed  Google Scholar 

  • Jørgensen P.L. 1988. Purification of Na+,K+-ATPase: Enzyme sources, preparative problems and preparation from mammalian kidney. Methods Enzymol. 156:29–43

    Article  PubMed  Google Scholar 

  • Jørgensen P.L., Håkansson K.O., Karlish S.J.D. 2003. Structure and mechanism of Na,K-ATPase: Functional sites and their interactions. Annu. Rev. Biochem. 65:817–849

    Article  PubMed  CAS  Google Scholar 

  • Keenan S.M., DeLisle R.K., Welsh W.J., Paula S., Ball W.J. Jr. 2005. Elucidation of the Na+,K+-ATPase digitalis binding site. J. Mol. Graph. Model. 23:465–472

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W. 2004. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell. Biol. 5:282–295

    Article  PubMed  CAS  Google Scholar 

  • Kunji E.R.S., von Gronau S., Oesterhelt D., Henderson R. 2000. The three-dimensional structure of halorhodopsin to 5 Å by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. Proc. Natl. Acad. Sci. USA 97:4637–4642

    Article  PubMed  CAS  Google Scholar 

  • Li C., Grosdidier A., Crambert G., Horisberger J.-D., Michielin O., Geering K. 2004. Structural and functional interaction sites between Na,K-ATPase and FXYD proteins. J. Biol. Chem. 279:38895–38902

    Article  PubMed  CAS  Google Scholar 

  • Lubarski I., Pihakaski-Maunsbach K., Karlish S.J.D., Maunsbach A.B., Garty H. 2005. Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel). J. Biol. Chem. 280:33717–33724

    Article  CAS  Google Scholar 

  • Obara K., Miyashita N., Xu C., Toyoshima I., Sugita Y., Inesi G., Toyoshima C. 2005. Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc. Natl. Acad. Sci. USA 102:14489–14496

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H., Toyoshima C. 2002. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl. Acad. Sci. USA 99:15977–15982

    Article  PubMed  CAS  Google Scholar 

  • Olesen C., Sørensen T.L.-M., Nielsen R.C., Møller J.V., Nissen P. 2004. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–2255

    Article  PubMed  CAS  Google Scholar 

  • Or E., Goldshleger R., Karlish S.J.D. 1999. Characterization of disulfide cross-links between fragments of proteolyzed Na,K-ATPase. J. Biol. Chem. 274:2802–2809

    Article  PubMed  CAS  Google Scholar 

  • Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. 2004. USCF chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Pu H.X., Scanzano R., Blostein R. 2002. Distinct regulatory effects of the Na,K-ATPase γ subunit. J. Biol. Chem. 277:20270–20276

    Article  PubMed  CAS  Google Scholar 

  • Rice W.J., Young H.S., Martin D.W., Sachs J.R., Stokes D.L. 2001. Structure of Na+,K+-ATPase at 11-Å resolution: Comparison with Ca2+-ATPase in E1 and E2 states. Biophys. J. 80:2187–2197

    Article  PubMed  CAS  Google Scholar 

  • Šali A., Blundell T.L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779–815

    Article  PubMed  Google Scholar 

  • Sørensen T.L.-M., Møller J.V., Nissen P. 2004. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  PubMed  CAS  Google Scholar 

  • Stokes D.L., Pomfret A.J., Rice W.J., Glaves J.P., Young H.S. 2006. Interactions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals. Biophys. J. 90:4213–4223

    Article  PubMed  CAS  Google Scholar 

  • Sweadner K.J., Donnet C. 2001. Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem. J. 356:685–704

    Article  PubMed  CAS  Google Scholar 

  • Sweadner K.J., Rael E. 2000. The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    Article  PubMed  CAS  Google Scholar 

  • Therien A.G., Pu H.X., Karlish S.J.D., Blostein R. 2001. Molecular and functional studies of the gamma subunit of the sodium pump. J. Bioenerg. Biomembr. 33:407–414

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Asahi M., Sugita Y., Khanna R., Tsuda T., MacLennan D.H. 2003. Modeling of the inhibitory interaction of phospholamban with the Ca2+ATPase. Proc. Natl. Acad. Sci. USA 100:467–472

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Mizutani T. 2004. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Nakasako M., Nomura H., Ogawa H. 2000. Crystal structure of the calcium pump of the sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Nomura H. 2002. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C., Nomura H., Tsuda T. 2004. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–368

    Article  PubMed  CAS  Google Scholar 

  • Wang S.-G., Farley R.A. 1998. Valine 904, tyrosine 898 and cysteine 908 in Na,K-ATPase α subunits are important for assembly with β subunits. J. Biol. Chem. 273:29400–29405

    Article  PubMed  CAS  Google Scholar 

  • Wriggers W., Milligan R.A., McCammon A. 1999. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125:185–195

    Article  PubMed  CAS  Google Scholar 

  • Zouzoulas A., Blostein R. 2006. Regions of the catalytic α subunit of Na,K-ATPase important for functional interactions with FXYD 2. J. Biol. Chem. 281:8539–8544

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Swedish Research Council, the Danish Medical Research Council and the Water and Salt Research Center (established and supported by the Danish National Research Foundation, Grundforskningsfonden). P. P. acknowledges a fellowship from the Emil Aaltonen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purhonen, P., Thomsen, K., Maunsbach, A. et al. Association of Renal Na,K-ATPase α-Subunit with the β- and γ-Subunits Based on Cryoelectron Microscopy. J Membrane Biol 214, 139–146 (2006). https://doi.org/10.1007/s00232-006-0056-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0056-8

Keywords

Navigation