Skip to main content
Log in

Effect of Alloxan Diabetes and Subsequent Insulin Treatment on Temperature Kinetics Properties of Succinate Oxidase Activity in Rat Kidney Mitochondria

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Early and late effects of alloxan diabetes and subsequent treatment with insulin on the temperature kinetics properties of succinate oxidase (SO) activity in rat kidney mitochondria were examined. In diabetic animals SO activity increased significantly and the increase was more pronounced at the late stage. Insulin treatment partially restored SO activity. However, the effect was temperature-dependent. In diabetic animals the energy of activation in the low temperature range (EL) increased significantly while that in the high temperature range (EH) decreased. The latter seems to be responsible for improving catalytic efficiency in the diabetic state. Insulin treatment normalized EH only in the 1-month diabetic group. The phase transition temperature (Tt), decreased in diabetic animals. Insulin treatment caused an increase beyond the control value in Tt in 1-month diabetic animals. The results suggest that insulin status-dependent modulation of SO activity is a complex process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Ascic-Buturovic B., Surkovic I., Heljic B. 2005. Contemporary methods of prevention and treatment diabetic kidney disease. Med. Arh. 59:54–56

    PubMed  Google Scholar 

  • Bartlett G.R. 1954. Phosphorus assay in column chromatography. J. Biol. Chem. 234:466–468

    Google Scholar 

  • Baydas B., Karagoz S., Meral I. 2002. Effects of oral zinc and magnesium supplementation on serum thyroid hormone and lipid levels in experimentally induced diabetic rats. Biol. Trace Elem. Res. 88:247–253

    Article  PubMed  CAS  Google Scholar 

  • Bohlender J.M., Franke S., Stein G., Wolf G. 2005. Advanced glycation end products and the kidney. Am. J. Physiol. 289:R645–R659

    Article  CAS  Google Scholar 

  • Coste T., Pierlovisi M., Leonardi J., Dufayet D., Gerbi A., Lafont H., Vague P., Raccah D. 1999. Beneficial effects of gamma linolenic acid supplementation on nerve conduction velocity, Na+,K+ ATPase activity, and membrane fatty acid composition in sciatic nerve of diabetic rats. J. Nutr. Biochem. 10:411–420

    Article  PubMed  CAS  Google Scholar 

  • Daum G. 1985. Lipids of mitochondria. Biochim. Biophys. Acta 822:1–42

    PubMed  CAS  Google Scholar 

  • Dave B.H., Billimoria, F.R., Katyare S.S. 1989. Attered kinetic properties of rat heart mitochondrial enzymed following experiment – thyrotoxicosis. J. Biosci. 14:341–349

    CAS  Google Scholar 

  • Dave K.R., Katyare S.S. 2002. Effect of alloxan induced diabetes on serum and cardiac butyrylcholinesterase in the rat. J. Endocrinol. 175:241–250

    Article  PubMed  CAS  Google Scholar 

  • Dave K.R., Syal A.R., Katyare S.S. 999. Tissue cholinesterases. A comparative study of their kinetic properties. Z. Naturforsch. 55c:100–108

    Google Scholar 

  • Dixon, M., Webb, E.C. 1979. In: M. Dixon, E.C. Webb, C. Thorne, Jr., K.F. Tipton, editors. Enzymes, 3rd ed. Longman, London pp. 332–446

  • Ferreira F.M., Seica R., Oliveira P.J., Coxito P.M., Moreno A.J., Palmeira C.M., Santos M.S. 2003. Diabetes induces metabolic adaptations in rat liver mitochondria: Role of coenzyme Q and cardiolipin contents. Biochim. Biophys. Acta 1639:113–120

    PubMed  CAS  Google Scholar 

  • Jacobsen P.K. 2005. Preventing end stage renal disease in diabetic patients–genetic aspect (part I). J. Renin Angiotensin Aldosterone Syst. 6:1–14

    PubMed  CAS  Google Scholar 

  • Jawa A., Kcomt J., Fonseca V.A. 2004. Diabetic nephropathy and retinopathy. Med. Clin. North Am. 88:1001–1036

    Article  PubMed  CAS  Google Scholar 

  • Jensen L.J., Ostergaard J., Flyvbjerg A. 2005. AGE-RAGE and AGE Cross-link interaction: Important players in the pathogenesis of diabetic kidney disease. Horm. Metab. Res. 37:26–34

    Article  PubMed  CAS  Google Scholar 

  • Jolin T., 1987. Diabetes decreases liver and kidney nuclear 3,5,3’-triiodothyronine receptors in rats. Endocrinology 120:2144–2151

    PubMed  CAS  Google Scholar 

  • Jolin T. 1988. Response of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme to 3,5,3′-triiodothyronine in streptozotocin-diabetic rats. Endocrinology 123:248–257

    Article  PubMed  CAS  Google Scholar 

  • Katovich M.J. Marks K.S., Sninsky C.A. 1993. Effect of insulin on the altered thyroid function and adrenergic responsiveness in the diabetic rat. Can. J. Physiol. Pharmacol. 71:568–575

    PubMed  CAS  Google Scholar 

  • Katyare S.S., Joshi M.V., Fatterpaker P., Sreenivasan A. 1977. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney and brain mitochondria. Arch. Biochem. Biophys. 182:155–163

    Article  PubMed  CAS  Google Scholar 

  • Katyare S.S., Satav J.G. 2005. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat kidney mitochondria. A comparative study of early and late effects. Diabetes Obes. Metab. 7:555–562

    Article  PubMed  CAS  Google Scholar 

  • Kumthekar M.M., Katyare S.S. 1992. Altered kinetic attributes of Na+, K+-ATPase activity in kidney, brain and erythrocyte membranes in alloxan-diabetic rats. Ind. J. Exp. Biol. 30:26–32

    CAS  Google Scholar 

  • Kuwahara Y., Yanagishita T., Konno N., Katagiri T. 1997. Changes in microsomal membrane phospholipids and fatty acids and in activities of membrane-bound enzyme in diabetic rat heart. Basic Res. Cardiol. 92:214–222

    Article  PubMed  CAS  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275

    PubMed  CAS  Google Scholar 

  • Nerurkar M.A., Satav J.G., Katyare S.S. 1988. Insulin-dependent changes in lysosomal cathepsin D activity in rat liver, kidney, brain and heart. Diabetologia 31:119–122

    Article  PubMed  CAS  Google Scholar 

  • Pandya J.D., Dave K.R., Katyare S.S. 2001. Effect of long term aluminum feeding on lipid/phospholipid profiles of rat brain synaptic plasma membranes and microsomes. J. Alzheimer’s Dis. 3:531–539

    CAS  Google Scholar 

  • Park C., Drake R.L. 1982. Insulin mediates the stimulation of pyruvate kinase by a dual mechanism. Biochem. J. 208:333–337

    Google Scholar 

  • Patel H.G., Aras R.V., Dave K.R., Katyare S.S. 1999. Kinetic attributes of Na+/K+ ATPase and lipid/phospholipid profiles of rat and human erythrocyte membrane. Z. Naturforsch. 55c:770–777

    Google Scholar 

  • Patel S.P., Katyare S.S. 2006a. Insulin-status-dependant modulation of FoF1 ATPase activity in rat kidney mitochondria. Arch. Physiol. Biochem. 112:150–157

    Article  CAS  Google Scholar 

  • Patel S.P., Katyare S.S. 2006b. Insulin-status-dependant modulation of FoF1 ATPase activity in rat liver mitochondria. Lipids. 41:695–703

    Article  CAS  Google Scholar 

  • Radetti G., Paganini C., Gentili L., Barbin F., Pasquino B., Zachmann M. 1994. Altered adrenal and thyroid function in children with insulin-dependent diabetes mellitus. Acta Diabetol. 31:138–140

    Article  PubMed  CAS  Google Scholar 

  • Rodgers C.D., Noble E.G., Taylor A.W. 1994. The effect of STZ-induced diabetes on serum triiodothyronine (T3) and thyroxine (T4) levels in the rat: A seven week time course. Diabetes Res. 26:93–100

    PubMed  CAS  Google Scholar 

  • Rondeel J.M., de Greef W.J., Heide R., Visser T.J. 1992. Hypothalamo-hypophysial-thyroid axis in streptozotocin-induced diabetes. Endocrinology 130:216–220

    Article  PubMed  CAS  Google Scholar 

  • Satav J.G., Dave K.R., Katyare S.S. 2000. Influence of insulin status on extra-mitochondrial oxygen metabolism in the rat. Horm. Metab. Res. 32:57–61

    Article  PubMed  CAS  Google Scholar 

  • Satav J.G., Katyare S.S. 1991. Effect of thyroidectomy and subsequent treatment with triiodothyronine kidney mitochondrial oxidative phosphorylation in the rat. J. Biosci. 16:81–89

    CAS  Google Scholar 

  • Satav J.G., Katyare S.S. 2004. Effect of streptozotocin-induced diabetes on oxidative energy metabolism in rat liver mitochondria - A comparative study of early and late effects. Ind. J. Clin. Biochem. 19:26–36

    Article  Google Scholar 

  • Singer T.P., Gutman M., Massey V. 1973. Succinate dehydrogenase. In: W. Lovenbarg, editor. Iron-Sulfur Proteins vol. 1,. Academic Press, New York pp. 227–254

    Google Scholar 

  • Skipski V.P., Barclay M., Barclay R.K., Fetzer V.A., Good J.J., Archibald F.M. 1967. Lipid composition of human serum lipoprotein. Biochem. J. 104:340–361

    PubMed  CAS  Google Scholar 

  • Tabata S., Toyoda N., Nishikawa M., Yonemoto T., Gondou A., Ogawa Y., Sakaguchi N., Tokoro T., Wang F., Kadobayashi T., Imai Y., Inada M. 1999. Effect of streptozotocin-induced diabetes mellitus on type 1 deiodinase (D1) in inherited D1-deficient mice. Endocr. J. 46:497–504

    PubMed  CAS  Google Scholar 

  • Zlatkis A., Zak B., Boyel J.A. 1953. A new method for the determination of serum cholesterol. J. Lab. Clin. Med. 41:486–492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra S. Katyare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.P., Katyare, S.S. Effect of Alloxan Diabetes and Subsequent Insulin Treatment on Temperature Kinetics Properties of Succinate Oxidase Activity in Rat Kidney Mitochondria. J Membrane Biol 213, 31–37 (2006). https://doi.org/10.1007/s00232-006-0041-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0041-2

Keywords

Navigation