Abstract
The pore-formation activity of monomeric and oligomeric forms of different Cry1 toxins (from Cry1A to Cry1G) was analyzed by monitoring ionic permeability across Manduca sexta brush border membrane vesicles. The membrane vesicles were isolated from microvilli structures, showing a high enrichment of apical membrane markers and low intrinsic K+ permeability. A fluorometric assay performed with 3,3′-dipropylthiodicarbocyanine fluorescent probe, sensitive to changes in membrane potential, was used. Previously, it was suggested that fluorescence determinations with this dye could be strongly influenced by the pH, osmolarity and ionic strength of the medium. Therefore, we evaluated these parameters in control experiments using the K+-selective ionophore valinomycin. We show here that under specific ionic conditions changes in fluorescence can be correlated with ionic permeability without effects on osmolarity or ionic strength of the medium. It is extremely important to attenuate the background response due to surface membrane potential and the participation of the endogenous permeability of the membrane vesicles. Under these conditions, we analyzed the pore-formation activity induced by monomeric and oligomeric structures of different Cry1 toxins. The Cry1 toxin samples containing oligomeric structures correlated with high pore activity, in contrast to monomeric samples that showed marginal pore-formation activity, supporting the hypothesis that oligomer formation is a necessary step in the mechanism of action of Cry toxins.





Similar content being viewed by others
References
Maagd R.A., Bravo A., Crickmore N. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193–199
Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806
Bravo A., Jansens S., Peferoen M. 1992. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects. J. Invertebr. Pathol. 60:237–246
Bravo A., Gómez I., Conde J., Muñoz-Garay C., Sánchez J., Miranda R., Zhuang M., Gill S.S., Soberón M. 2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim. Biophys. Acta. 1667:38–46
Gómez I., Sánchez J., Miranda R., Bravo A., Soberon M. 2002. Cadherin-like receptor binding facilitates proteolytic cleavage of helix α-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Lett. 513:242–246
Zhuang M., Oltean D.I., Gomez I., Pullikuth A.K., Soberon M., Bravo A., Gill S.S. 2002. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J. Biol. Chem. 277:13863–13872
Rausell C., Muñoz-Garay C., Miranda-CassoLuengo R., Gómez I., Rudiño-Piñera E., Soberón M., Bravo A. 2004. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Biochemistry. 43:166–174
Rausell C., Pardo-López L., Sánchez J., Muñoz-Garay C., Morera C., Soberón M., Bravo A. 2004. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane inserted pore channel. J. Biol. Chem. 279:55168–55175
Rausell C., García-Robles I., Sánchez J., Muñoz-Garay C., Martínez-Ramírez A.C., Real M.D., Bravo A. 2004. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata [Say]. Biochem. Biophys. Acta. 1660:99–105
Lorence A., Darszon A., Díaz C., Liévano A., Quintero R., Bravo A. 1995. δ-Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett. 360:217–222
Lorence A., Darszon A., Bravo A. 1997. The pore formation activity of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membranes depends on the presence of aminopeptidase N. FEBS Lett. 414:303–307
Bashford C.L., Smith J.C. 1979. The use of optical probes to monitor membrane potential. Methods Enzymol. 55:569–586
Waggoner A. 1976. Optical probes of membrane potential. J. Membr. Biol. 27:317–334
Cabrini G., Verkman A.S. 1986. Localization of cyanine dye binding to brush border membranes by quenching of n-(9-anthroyloxy) fatty acid probes. Biochim. Biophys. Acta. 862:285–293
Kirouac M., Vachon V., Rivest S., Schwartz J-L., Laprade R. 2003. Analysis of the properties of Bacillus thuringiensis insecticidal toxins using a potential-sensitive fluorescent probe. J. Membr. Biol. 196:51–59
Bravo A., Miranda R., Gómez I., Soberon M. 2002. Pore formation activity of Cry toxins from Bacillus thuringiensis in an improved membrane preparation from Manduca sexta midgut cell microvilli. Biochem. Biophys. Acta. 1562:63–69
Harlow E., Lane D., 1988. Antibodies. A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Gómez I., Oltean D.L, Gill S.S., Bravo A., Soberón M. 2001. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. J. Biol. Chem. 276:28906–28912
Güereca L., Bravo A. 1999. The oligomeric state of Bacillus thuringiensis Cry toxins in solution. Biochim. Biophys. Acta. 1429:342–350
Höfte H., Grave H., Seurinck J., Jansens S., Mahillon J., Ampe C., Vandekerckhove J., Vanderbruggen H., VanMontagu M., Zabeau M., Vaek M. 1986. Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur. J. Biochem. 161:273–280
Hille, B. 1992. Chapter 16 structure and function In: B. Hille, editor. Ionic Channels of Excitable Membranes, pp. 427–464. Sinauer Associates, Suderland, MA
Watts A., van Gorkom C.M. 1991. Surface organization of lipid bilayers. In: P. Yeagle, editor. The Structure of Biological Membranes. CRC Press, New York
Schwartz J.L., Laprade R. 2000. Membrane permeabilization by Bacillus thuringiensis toxins: Protein insertion and pore formation. In: J. F. Charles, A. Deleeluse, C. Nielsen-LeRoux et al., editors. Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic, Amsterdam, Dordrecht, The Netherlands, pp. 199–217
Carroll J., Ellar D.J. 1993. An analysis of Bacillus thuringiensis δ-endotoxin action on insect midgut membrane permeability using a light scattering assay. Eur. J. Biochem. 214:771–778
Carroll J., Ellar D.J. 1997. Analysis of the large aqueous pores produced by Bacillus thuringiensis protein insecticide in Manduca sexta midgut brush border membrane vesicles. Eur. J. Biochem. 245:797–804
Tran B.L., Vachon V., Shwartz J.L., Laprade R. 2001. Differential effects on the pore formation properties of Bacillus thuringiensis insecticidal crystal proteins. Appl. Environ. Microbiol. 67:4488–4494
Acknowledgment
Our thanks to Lizbeth Cabrera for technical assistance and CONACyT J44962Q for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article can be found online at http://dx.doi.org/10.1007/s00232-012-9519-2
Rights and permissions
About this article
Cite this article
Muñoz-Garay, C., Sánchez, J., Darszon, A. et al. Permeability Changes of Manduca sexta Midgut Brush Border Membranes Induced by Oligomeric Structures of Different Cry Toxins. J Membrane Biol 212, 61–68 (2006). https://doi.org/10.1007/s00232-006-0003-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00232-006-0003-8


