Skip to main content

Advertisement

Log in

Ca2+-Permeable Acid-sensing Ion Channels and Ischemic Brain Injury

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Aarts M., Iihara K., Wei W.L., Xiong Z.G., Arundine M., Cerwinski W., MacDonald J.F., Tymianski M. 2003. A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  • Akopian A.N., Chen C.C., Ding Y., Cesare P., Wood J.N. 2000. A new member of the acid-sensing ion channel family. Neuroreport 11:2217–2222

    CAS  PubMed  Google Scholar 

  • Albers G.W., Goldberg M.P., Choi D.W. 1989. N-methyl-D-aspartate antagonists: ready for clinical trial in brain ischemia? Ann. Neurol. 25:398–403

    CAS  Google Scholar 

  • Allen N.J., Attwell D. 2002. Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischemia-related signals. J. Physiol. 543:521–529

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, d.l.R., Canessa C.M., Fyfe G.K., Zhang P. 2000. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62:573–594

    Article  Google Scholar 

  • Askwith C.C., Wemmie J.A., Price M.P., Rokhlina T., Welsh M.J. 2004. ASIC2 modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279:18296–18305

    Article  CAS  PubMed  Google Scholar 

  • Babinski K., Catarsi S., Biagini G., Seguela P. 2000. Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton- gated channels sensitive to Gd3+. J. Biol. Chem. 275:28519–28525

    Article  CAS  PubMed  Google Scholar 

  • Back T., Hoehn M., Mies G., Busch E., Schmitz B., Kohno K., Hossmann K.A. 2000. Penumbral tissue alkalosis in focal cerebral ischemia: relationship to energy metabolism, blood flow, and steady potential. Ann. Neurol. 47:485–492

    Article  CAS  PubMed  Google Scholar 

  • Baron A., Schaefer L., Lingueglia E., Champigny G., Lazdunski M. 2001. Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol. Chem. 276:35361–35367

    Article  CAS  PubMed  Google Scholar 

  • Baron A., Waldmann R., Lazdunski M. 2002. ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol. 539:485–494

    Article  CAS  PubMed  Google Scholar 

  • Bassilana F., Champigny G., Waldmann R., De Weille J.R., Heurteaux C., Lazdunski M. 1997. The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties. J. Biol. Chem. 272:28819–28822

    Article  CAS  PubMed  Google Scholar 

  • Bassler E.L., Ngo-Anh T.J., Geisler H.S., Ruppersberg J.P., Grunder S. 2001. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. 276:33782–33787

    Article  CAS  PubMed  Google Scholar 

  • Benos D.J., Stanton B.A. 1999. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J. Physiol. 520:631–644

    Article  CAS  PubMed  Google Scholar 

  • Benson C.J., Eckert S.P., McCleskey E.W. 1999. Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation. Circ. Res. 84:921–928

    CAS  PubMed  Google Scholar 

  • Benveniste M., Dingledine R. 2005. Limiting stroke-induced damage by targeting an acid channel. N. Engl. J. Med. 352:85–86

    Article  CAS  PubMed  Google Scholar 

  • Benveniste H., Drejer J., Schousboe A., Diemer N.H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374

    CAS  PubMed  Google Scholar 

  • Bevan S., Yeats J. 1991. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J. Physiol. 433:145–161

    CAS  PubMed  Google Scholar 

  • Bianchi L., Driscoll M. 2002. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34:337–340

    Article  CAS  PubMed  Google Scholar 

  • Biegon A., Fry P.A., Paden C.M., Alexandrovich A., Tsenter J., Shohami E. 2004. Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits. Proc. Natl. Acad. Sci. USA 101:5117–5122

    Article  CAS  PubMed  Google Scholar 

  • Buck L.T., Bickler P.E. 1998. Adenosine and anoxia reduce N-methyl-D-aspartate receptor open probability in turtle cerebrocortex. J. Exp. Biol. 201:289–297

    CAS  PubMed  Google Scholar 

  • Chen M., Bullock R., Graham D.I., Frey P., Lowe D., McCulloch J. 1991. Evaluation of a competitive NMDA antagonist (D-CPPene) in feline focal cerebral ischemia. Ann. Neurol. 30:62–70

    Article  CAS  PubMed  Google Scholar 

  • Chen C.C., England S., Akopian A.N., Wood J.N. 1998. A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. USA 95:10240–10245

    Article  CAS  PubMed  Google Scholar 

  • Chen C.C., Zimmer A., Sun W.H., Hall J., Brownstein M.J., Zimmer A. 2002. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. USA 99:8992–8997

    CAS  PubMed  Google Scholar 

  • Chesler M. 1990. The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34:401–427

    Article  CAS  PubMed  Google Scholar 

  • Choi D.W. 1988a. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends. Neurosci. 11:465–469

    Article  CAS  Google Scholar 

  • Choi D.W. 1988b. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  CAS  Google Scholar 

  • Choi D.W. 1992. Excitotoxic cell death. J. Neurobiol. 23:1261–1276

    Article  CAS  PubMed  Google Scholar 

  • Choi D.W., Koh J.Y., Peters S. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8:185–196

    CAS  PubMed  Google Scholar 

  • Choi D.W., Rothman S.M. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–182

    Article  CAS  PubMed  Google Scholar 

  • Chu X.P., Miesch J., Johnson M., Root L., Zhu X.M., Chen D., Simon R.P., Xiong Z.G. 2002a. Proton-gated channels in PC12 cells. J. Neurophysiol. 87:2555–2561

    CAS  Google Scholar 

  • Chu X.P., Wemmie J.A., Wang W.Z., Zhu X.M., Saugstad J.A., Price M.P., Simon R.P., Xiong Z.G. 2004. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24:8678–8689

    Article  CAS  PubMed  Google Scholar 

  • Chu X.P., Zhu X.M., Chen D., Simon R.P., Xiong Z.G. 2002b. Metabolic inhibition enhances the activities of acid-sensing ion channels. Soc. Neurosci. Abstr. 95.10

  • Corey D.P., Garcia-Anoveros J. 1996. Mechanosensation and the DEG/ENaC ion channels. Science 273:323–324

    CAS  PubMed  Google Scholar 

  • Coyle J.T., Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    CAS  PubMed  Google Scholar 

  • Crowell J.W., Kaufmann B.N. 1961. Changes in tissue pH after circulatory arrest. Am. J. Physiol. 200:743–745

    CAS  PubMed  Google Scholar 

  • Curtis D.R., Watkins J.C. 1960. Acidic amino acids with strong excitatory actions on mammalian neurones. J. Physiol. 166:1–14

    Google Scholar 

  • De La Rosa D.A., Krueger S.R., Kolar A., Shao D., Fitzsimonds R.M., Canessa C.M. 2003. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. 546:77–87

    Article  CAS  Google Scholar 

  • De Weille J., Bassilana F., Lazdunski M., Waldmann R. 1998. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett. 433:257–260

    Article  PubMed  Google Scholar 

  • Diochot S., Baron A., Rash L.D., Deval E., Escoubas P., Scarzello S., Salinas M., Lazdunski M. 2004. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 23:1516–1525

    Article  CAS  PubMed  Google Scholar 

  • Du C., Hu R., Csernansky C.A., Hsu C.Y., Choi D.W. 1996. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab. 16:195–201

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P., De Weille J.R., Lecoq A., Diochot S., Waldmann R., Champigny G., Moinier D., Menez A., Lazdunski M. 2000. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275:25116–25121

    Article  CAS  PubMed  Google Scholar 

  • Ettaiche M., Guy N., Hofman P., Lazdunski M., Waldmann R. 2004. Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J. Neurosci. 24:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Gao J., Duan B., Wang D., Deng X., Zhang G., Xu L., Xu T.L. 2005. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Anoveros J., Derfler B., Neville-Golden J., Hyman B.T., Corey D.P. 1997. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc. Natl. Acad. Sci. USA 94:1459–1464

    Article  CAS  PubMed  Google Scholar 

  • Gasic G.P., Hollmann M. 1992. Molecular neurobiology of glutamate receptors. Annu. Rev. Physiol. 54:507–536

    Article  CAS  PubMed  Google Scholar 

  • Giffard R.G., Monyer H., Choi D.W. 1990a. Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res. 530:138–141

    Article  CAS  Google Scholar 

  • Giffard R.G., Monyer H., Christine C.W., Choi D.W. 1990b. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506:339–342

    Article  CAS  Google Scholar 

  • Gladstone D.J., Black S.E., Hakim A.M. 2002. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136

    Article  PubMed  Google Scholar 

  • Goldman S.A., Pulsinelli W.A., Clarke W.Y., Kraig R.P., Plum F. 1989. The effects of extracellular acidosis on neurons and glia in vitro. J. Cereb. Blood Flow Metab. 9:471–477

    CAS  PubMed  Google Scholar 

  • Grabb M.C., Choi D.W. 1999. Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J. Neurosci. 19:1657–1662

    CAS  PubMed  Google Scholar 

  • Grantyn R., Perouansky M., Rodriguez-Tebar A., Lux H.D. 1989. Expression of depolarizing voltage- and transmitter-activated currents in neuronal precursor cells from the rat brain is preceded by a proton- activated sodium current. Brain Res. Dev. Brain Res. 49:150–155

    Article  CAS  PubMed  Google Scholar 

  • Grunder S., Geissler H.S., Bassler E.L., Ruppersberg J.P. 2000. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11:1607–1611

    Article  CAS  PubMed  Google Scholar 

  • Hillered L., Smith M.L., Siesjo B.K. 1985. Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 5:259–266

    CAS  PubMed  Google Scholar 

  • Hoyte L., Barber P.A., Buchan A.M., Hill M.D. 2004. The rise and fall of NMDA antagonists for ischemic stroke. Curr. Mol. Med. 4:131–136

    Article  CAS  PubMed  Google Scholar 

  • Hsu M., Sik A., Gallyas F., Horvath Z., Buzsaki G. 1994. Short-term and long-term changes in the postischemic hippocampus. Ann. N. Y. Acad. Sci. 743:121–139

    CAS  PubMed  Google Scholar 

  • Huang Y., McNamara J.O. 2004. Ischemic stroke: “acidotoxicity” is a perpetrator. Cell 118:665–666

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou C., Stefovska V., Turski L. 2000. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc. Natl. Acad. Sci. USA 97:12885–12890

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou C., Turski L. 2002. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1:383–386

    Article  CAS  PubMed  Google Scholar 

  • Immke D.C., McCleskey E.W. 2001. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 4:869–870

    Article  CAS  PubMed  Google Scholar 

  • Immke D.C., McCleskey E.W. 2003. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    Article  CAS  PubMed  Google Scholar 

  • Johnson M.B., Jin K., Minami M., Chen D., Simon R.P. 2001. Global ischemia induces expression of acid-sensing ion channel 2a in rat brain. J. Cereb. Blood Flow Metab. 21:734–740

    Article  CAS  PubMed  Google Scholar 

  • Kaku D.A., Giffard R.G., Choi D.W. 1993. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260:1516–1518

    CAS  PubMed  Google Scholar 

  • Kalimo H., Rehncrona S., Soderfeldt B., Olsson Y., Siesjo B.K. 1981. Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J. Cereb. Blood Flow Metab. 1:313–327

    CAS  PubMed  Google Scholar 

  • Kimelberg H.K., Barron K.D., Bourke R.S., Nelson L.R., Cragoe E.J. 1990. Brain anti-cytoxic edema agents. Prog. Clin. Biol. Res. 361:363–385

    CAS  PubMed  Google Scholar 

  • Kleyman T.R., Cragoe E.J., Jr. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21

    Article  CAS  Google Scholar 

  • Kovalchuk Y., Krishtal O.A., Nowycky M.C. 1990. The proton-activated inward current of rat sensory neurons includes a calcium component. Neurosci. Lett. 115:237–242

    Article  CAS  PubMed  Google Scholar 

  • Kraig R.P., Petito C.K., Plum F., Pulsinelli W.A. 1987. Hydrogen ions kill brain at concentrations reached in ischemia. J. Cereb. Blood Flow Metab. 7:379–386

    CAS  PubMed  Google Scholar 

  • Kraig R.P., Pulsinelli W.A., Plum F. 1985. Hydrogen ion buffering during complete brain ischemia. Brain Res. 342:281–290

    Article  CAS  PubMed  Google Scholar 

  • Krishtal O. 2003. The ASICs: signaling molecules? Modulators? Trends Neurosci. 26:477–483

    Article  CAS  PubMed  Google Scholar 

  • Krishtal O.A., Pidoplichko V.I. 1980. A receptor for protons in the nerve cell membrane. Neuroscience 5:2325–2327

    Article  CAS  PubMed  Google Scholar 

  • Krishtal O.A., Pidoplichko V.I. 1981. A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 6:2599–2601

    Article  CAS  PubMed  Google Scholar 

  • Kristian T., Katsura K., Gido G., Siesjo B.K. 1994. The influence of pH on cellular calcium influx during ischemia. Brain Res. 641:295–302

    Article  CAS  PubMed  Google Scholar 

  • Krnjevic K. 1970. Glutamate and gamma-aminobutyric acid in brain. Nature 228:119–124

    Article  CAS  PubMed  Google Scholar 

  • Lee J.M., Zipfel G.J., Choi D.W. 1999. The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–14

    CAS  PubMed  Google Scholar 

  • Li M., Xiong Z.G. 2005. Developmental changes of acid-sensing ion channels in cultured mouse cortical neurons. Soc. Neurosci. Abstr. 957.9

  • Lin W., Ogura T., Kinnamon S.C. 2002. Acid-activated cation currents in rat vallate taste receptor cells. J. Neurophysiol. 88:133–141

    CAS  PubMed  Google Scholar 

  • Lingueglia E., De Weille J.R., Bassilana F., Heurteaux C., Sakai H., Waldmann R., Lazdunski M. 1997. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272:29778–29783

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren B., Norberg K., Siesjo B.K. 1974. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res. 77:173–186

    Article  CAS  PubMed  Google Scholar 

  • Longa E.Z., Weinstein P.R., Carlson S., Cummins R. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    CAS  PubMed  Google Scholar 

  • Lutz P.L., Milton S.L. 2004. Negotiating brain anoxia survival in the turtle. J. Exp. Biol. 207:3141–3147

    Article  CAS  PubMed  Google Scholar 

  • McDonald J.W., Bhattacharyya T., Sensi S.L., Lobner D., Ying H.S., Canzoniero L.M., Choi D.W. 1998. Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J. Neurosci. 18:6290–6299

    CAS  PubMed  Google Scholar 

  • Mori H., Mishina M. 1995. Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237

    Article  CAS  PubMed  Google Scholar 

  • Murphy E.J., Horrocks L.A. 1993. Mechanisms of hypoxic and ischemic injury. Use of cell culture models. Mol. Chem. Neuropathol. 19:95–106

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    CAS  PubMed  Google Scholar 

  • Nedergaard M., Goldman S.A., Desai S., Pulsinelli W.A. 1991b. Acid-induced death in neurons and glia. J. Neurosci. 11:2489–2497

    CAS  Google Scholar 

  • Nedergaard M., Kraig R.P., Tanabe J., Pulsinelli W.A. 1991a. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am. J. Physiol. 260:R581–R588

    CAS  Google Scholar 

  • Nicholls D., Attwell D. 1990. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–467

    Article  PubMed  Google Scholar 

  • Olney J., Price M., Salles K.S., Labruyere J., Frierdich G. 1987. MK-801 powerfully protects against N-methyl aspartate neurotoxicity. Eur. J. Pharmacol. 141:357–361

    Article  CAS  PubMed  Google Scholar 

  • Olney J.W., Ho O.L., Rhee V. 1971. Cytotoxic effects of acidic and sulphur-containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14:61–76

    Article  CAS  PubMed  Google Scholar 

  • Page A.J., Brierley S.M., Martin C.M., Price M.P., Symonds E., Butler R., Wemmie J.A., Blackshaw L.A. 2005. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54:1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G., Simon R.P., Xiong Z.G. 2005. Neuroprotective time window of ASIC1a blockade in mouse model of focal cerebral ischemia. Soc. Neurosci. Abstr. 669.14

  • Price M.P., Lewin G.R., McIlwrath S.L., Cheng C., Xie J., Heppenstall P.A., Stucky C.L., Mannsfeldt A.G., Brennan T.J., Drummond H.A., Qiao J., Benson C.J., Tarr D.E., Hrstka R.F., Yang B., Williamson R.A., Welsh M.J. 2000. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Price M.P., McIlwrath S.L., Xie J., Cheng C., Qiao J., Tarr D.E., Sluka K.A., Brennan T.J., Lewin G.R., Welsh M.J. 2001. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Price M.P., Snyder P.M., Welsh M.J. 1996. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 271:7879–7882

    Article  CAS  PubMed  Google Scholar 

  • Rehncrona S. 1985. Brain acidosis. Ann. Emerg. Med. 14:770–776

    Article  CAS  PubMed  Google Scholar 

  • Rehncrona S., Hauge H.N., Siesjo B.K. 1989. Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J. Cereb. Blood Flow Metab. 9:65–70

    CAS  PubMed  Google Scholar 

  • Rod M.R., Auer R.N. 1989. Pre- and post-ischemic administration of dizocilpine (MK-801) reduces cerebral necrosis in the rat. Can. J. Neurol. Sci. 16:340–344

    CAS  PubMed  Google Scholar 

  • Rosenblum W.I. 1997. Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia. J. Neurotrauma 14:313–326

    Article  CAS  PubMed  Google Scholar 

  • Rothman S.M., Olney J.W. 1995. Excitotoxicity and the NMDA receptor–Still lethal after eight years. Trends Neurosci. 18:57–58

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky R.M., Trafton J., Tombaugh G.C. 1996. Excitotoxic neuron death, acidotic endangerment, and the paradox of acidotic protection. Adv. Neurol. 71:237–244

    CAS  PubMed  Google Scholar 

  • Sattler R., Tymianski M. 2001. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24:107–129

    Article  CAS  PubMed  Google Scholar 

  • Sattler R., Xiong Z., Lu W.Y., Hafner M., MacDonald J.F., Tymianski M. 1999. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    Article  CAS  PubMed  Google Scholar 

  • Sattler R., Xiong Z., Lu W.Y., MacDonald J.F., Tymianski M. 2000. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J. Neurosci. 20:22–33

    CAS  PubMed  Google Scholar 

  • Saugstad J.A., Roberts J.A., Dong J., Zeitouni S., Evans R.J. 2004. Analysis of the membrane topology of the acid-sensing ion channel 2a. J. Biol. Chem. 279:55514–55519

    Article  CAS  PubMed  Google Scholar 

  • Siemkowicz E., Hansen A.J. 1981. Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke 12:236–240

    CAS  PubMed  Google Scholar 

  • Siesjo B.K. 1988. Acidosis and ischemic brain damage. Neurochem. Pathol. 9:31–88

    CAS  PubMed  Google Scholar 

  • Siesjo B.K. 1992. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg. 77:337–354

    Article  CAS  PubMed  Google Scholar 

  • Siesjo B.K., Katsura K., Kristian T. 1996. Acidosis-related damage. Adv. Neurol. 71:209–233

    CAS  PubMed  Google Scholar 

  • Simon R.P., Swan J.H., Griffiths T., Meldrum B.S. 1984. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    CAS  PubMed  Google Scholar 

  • Simonian N.A., Coyle J.T. 1996. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36:83–106

    Article  CAS  PubMed  Google Scholar 

  • Sluka K.A., Price M.P., Breese N.M., Stucky C.L., Wemmie J.A., Welsh M.J. 2003. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239

    Article  CAS  PubMed  Google Scholar 

  • Stenzel-Poore M.P., Stevens S.L., Xiong Z., Lessov N.S., Harrington C.A., Mori M., Meller R., Rosenzweig H.L., Tobar E., Shaw T.E., Chu X., Simon R.P. 2003. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Sucher N.J., Awobuluyi M., Choi Y.B., Lipton S.A. 1996. NMDA receptors: from genes to channels. Trends. Pharmacol. Sci. 17:348–355

    Article  CAS  PubMed  Google Scholar 

  • Sucher N.J., Lipton S.A., Dreyer E.B. 1997. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 37:3483–3493

    Article  CAS  PubMed  Google Scholar 

  • Sutherland S.P., Benson C.J., Adelman J.P., McCleskey E.W. 2001. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. USA 98:711–716

    Article  CAS  PubMed  Google Scholar 

  • Swanson R.A., Farrell K., Simon R.P. 1995. Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J Cereb. Blood. Flow. Metab. 15:417–424

    CAS  PubMed  Google Scholar 

  • Sweeney M.I., Yager J.Y., Walz W., Juurlink B.H. 1995. Cellular mechanisms involved in brain ischemia. Can. J. Physiol. Pharmacol. 73:1525–1535

    CAS  PubMed  Google Scholar 

  • Tang C.M., Dichter M., Morad M. 1990. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. USA 87:6445–6449

    CAS  PubMed  Google Scholar 

  • Thorn W., Heitmann R. 1954. Hydrogen ion concentration of cerebral cortex of rabbit in situ during peracute total ischemia, pure anoxia and during recuperation. Pfluegers Arch. 258:501–510

    Article  CAS  Google Scholar 

  • Tombaugh G.C., Sapolsky R.M. 1993. Evolving concepts about the role of acidosis in ischemic neuropathology. J. Neurochem. 61:793–803

    CAS  PubMed  Google Scholar 

  • Traynelis S.F., Cull-Candy S.G. 1990. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350

    Article  CAS  PubMed  Google Scholar 

  • Tymianski M. 1996. Cytosolic calcium concentrations and cell death in vitro. Adv. Neurol. 71:85–105

    CAS  PubMed  Google Scholar 

  • Tymianski M., Charlton M.P., Carlen P.L., Tator C.H. 1993. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13:2085–2104

    CAS  PubMed  Google Scholar 

  • Ueno S., Nakaye T., Akaike N. 1992. Proton-induced sodium current in freshly dissociated hypothalamic neurones of the rat. J. Physiol. 447:309–327

    CAS  PubMed  Google Scholar 

  • Ugawa S. 2003. Identification of sour-taste receptor genes. Anat. Sci. Int. 78:205–210

    Article  CAS  PubMed  Google Scholar 

  • Ugawa S., Ueda T., Ishida Y., Nishigaki M., Shibata Y., Shimada S. 2002. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Invest. 110:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Ugawa S., Yamamoto T., Ueda T., Ishida Y., Inagaki A., Nishigaki M., Shimada S. 2003. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J. Neurosci. 23:3616–3622

    CAS  PubMed  Google Scholar 

  • Varming T. 1999. Proton-gated ion channels in cultured mouse cortical neurons. Neuropharmacology 38:1875–1881

    Article  CAS  PubMed  Google Scholar 

  • Wahlgren N.G., Ahmed N. 2004. Neuroprotection in cerebral ischaemia: facts and fancies–the need for new approaches. Cerebrovasc. Dis. 17(Suppl 1):153–166

    Article  CAS  PubMed  Google Scholar 

  • Waldmann R., Bassilana F., De Weille J., Champigny G., Heurteaux C., Lazdunski M. 1997b. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272:20975–20978

    Article  CAS  Google Scholar 

  • Waldmann R., Champigny G., Bassilana F., Heurteaux C., Lazdunski M. 1997a. A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  Google Scholar 

  • Waldmann R., Champigny G., Voilley N., Lauritzen I., Lazdunski M. 1996. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271:10433–10436

    Article  CAS  PubMed  Google Scholar 

  • Waldmann R., Lazdunski M. 1998. H+-gated cation channels: neuronal acid sensors in the ENaC/DEG family of ion channels. Curr. Opin. Neurobiol. 8:418–424

    Article  CAS  PubMed  Google Scholar 

  • Wemmie J.A., Askwith C.C., Lamani E., Cassell M.D., Freeman J.H., Jr., Welsh M.J. 2003. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23:5496–5502

    CAS  PubMed  Google Scholar 

  • Wemmie J.A., Chen J., Askwith C.C., Hruska-Hageman A.M., Price M.P., Nolan B.C., Yoder P.G., Lamani E., Hoshi T., Freeman J.H., Welsh M.J. 2002. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    Article  CAS  PubMed  Google Scholar 

  • Wieloch T. 1985. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D- aspartate antagonist. Science 230:681–683

    CAS  PubMed  Google Scholar 

  • Wu L.J., Duan B., Mei Y.D., Gao J., Chen J.G., Zhuo M., Xu L., Wu M., Xu T.L. 2004. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J. Biol. Chem. 279:43716–43724

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z.G., Zhu X.M., Chu X.P., Minami M., Hey J., Wei W.L., MacDonald J.F., Wemmie J.A., Price M.P., Welsh M.J., Simon R.P. 2004. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    Article  CAS  PubMed  Google Scholar 

  • Yermolaieva O., Leonard A.S., Schnizler M.K., Abboud F.M., Welsh M.J. 2004. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 101:6752–6757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank NIH, AHA, and Legacy Good Samaritan Foundation for their support of various projects related to acid-sensing ion channels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-G. Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, ZG., Chu, XP. & Simon, R. Ca2+-Permeable Acid-sensing Ion Channels and Ischemic Brain Injury. J Membrane Biol 209, 59–68 (2006). https://doi.org/10.1007/s00232-005-0840-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0840-x

Keywords

Navigation