Advertisement

The Journal of Membrane Biology

, Volume 209, Issue 1, pp 59–68 | Cite as

Ca2+-Permeable Acid-sensing Ion Channels and Ischemic Brain Injury

  • Z.-G. XiongEmail author
  • X.-P. Chu
  • R.P. Simon
Article

Abstract

Acidosis is a common feature of brain in acute neurological injury, particularly in ischemia where low pH has been assumed to play an important role in the pathological process. However, the cellular and molecular mechanisms underlying acidosis-induced injury remain unclear. Recent studies have demonstrated that activation of Ca2+-permeable acid-sensing ion channels (ASIC1a) is largely responsible for acidosis-mediated, glutamate receptor-independent, neuronal injury. In cultured mouse cortical neurons, lowering extracellular pH to the level commonly seen in ischemic brain activates amiloride-sensitive ASIC currents. In the majority of these neurons, ASICs are permeable to Ca2+, and an activation of these channels induces increases in the concentration of intracellular Ca2+ ([Ca2+]i). Activation of ASICs with resultant [Ca2+]i loading induces time-dependent neuronal injury occurring in the presence of the blockers for voltage-gated Ca2+ channels and the glutamate receptors. This acid-induced injury is, however, inhibited by the blockers of ASICs, and by reducing [Ca2+]o. In focal ischemia, intracerebroventricular administration of ASIC1a blockers, or knockout of the ASIC1a gene protects brain from injury and does so more potently than glutamate antagonism. Furthermore, pharmacological blockade of ASICs has up to a 5 h therapeutic time window, far beyond that of glutamate antagonists. Thus, targeting the Ca2+-permeable acid-sensing ion channels may prove to be a novel neuroprotective strategy for stroke patients.

Keywords

Acidosis Ischemia Ca2+ toxicity Neurons Patch clamp 

Notes

Acknowledgement

We thank NIH, AHA, and Legacy Good Samaritan Foundation for their support of various projects related to acid-sensing ion channels.

References

  1. Aarts M., Iihara K., Wei W.L., Xiong Z.G., Arundine M., Cerwinski W., MacDonald J.F., Tymianski M. 2003. A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877CrossRefPubMedGoogle Scholar
  2. Akopian A.N., Chen C.C., Ding Y., Cesare P., Wood J.N. 2000. A new member of the acid-sensing ion channel family. Neuroreport 11:2217–2222PubMedGoogle Scholar
  3. Albers G.W., Goldberg M.P., Choi D.W. 1989. N-methyl-D-aspartate antagonists: ready for clinical trial in brain ischemia? Ann. Neurol. 25:398–403Google Scholar
  4. Allen N.J., Attwell D. 2002. Modulation of ASIC channels in rat cerebellar Purkinje neurons by ischemia-related signals. J. Physiol. 543:521–529CrossRefPubMedGoogle Scholar
  5. Alvarez, d.l.R., Canessa C.M., Fyfe G.K., Zhang P. 2000. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62:573–594CrossRefGoogle Scholar
  6. Askwith C.C., Wemmie J.A., Price M.P., Rokhlina T., Welsh M.J. 2004. ASIC2 modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279:18296–18305CrossRefPubMedGoogle Scholar
  7. Babinski K., Catarsi S., Biagini G., Seguela P. 2000. Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton- gated channels sensitive to Gd3+. J. Biol. Chem. 275:28519–28525CrossRefPubMedGoogle Scholar
  8. Back T., Hoehn M., Mies G., Busch E., Schmitz B., Kohno K., Hossmann K.A. 2000. Penumbral tissue alkalosis in focal cerebral ischemia: relationship to energy metabolism, blood flow, and steady potential. Ann. Neurol. 47:485–492CrossRefPubMedGoogle Scholar
  9. Baron A., Schaefer L., Lingueglia E., Champigny G., Lazdunski M. 2001. Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol. Chem. 276:35361–35367CrossRefPubMedGoogle Scholar
  10. Baron A., Waldmann R., Lazdunski M. 2002. ASIC-like, proton-activated currents in rat hippocampal neurons. J. Physiol. 539:485–494CrossRefPubMedGoogle Scholar
  11. Bassilana F., Champigny G., Waldmann R., De Weille J.R., Heurteaux C., Lazdunski M. 1997. The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties. J. Biol. Chem. 272:28819–28822CrossRefPubMedGoogle Scholar
  12. Bassler E.L., Ngo-Anh T.J., Geisler H.S., Ruppersberg J.P., Grunder S. 2001. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J. Biol. Chem. 276:33782–33787CrossRefPubMedGoogle Scholar
  13. Benos D.J., Stanton B.A. 1999. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J. Physiol. 520:631–644CrossRefPubMedGoogle Scholar
  14. Benson C.J., Eckert S.P., McCleskey E.W. 1999. Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation. Circ. Res. 84:921–928PubMedGoogle Scholar
  15. Benveniste M., Dingledine R. 2005. Limiting stroke-induced damage by targeting an acid channel. N. Engl. J. Med. 352:85–86CrossRefPubMedGoogle Scholar
  16. Benveniste H., Drejer J., Schousboe A., Diemer N.H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374PubMedGoogle Scholar
  17. Bevan S., Yeats J. 1991. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurones. J. Physiol. 433:145–161PubMedGoogle Scholar
  18. Bianchi L., Driscoll M. 2002. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34:337–340CrossRefPubMedGoogle Scholar
  19. Biegon A., Fry P.A., Paden C.M., Alexandrovich A., Tsenter J., Shohami E. 2004. Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits. Proc. Natl. Acad. Sci. USA 101:5117–5122CrossRefPubMedGoogle Scholar
  20. Buck L.T., Bickler P.E. 1998. Adenosine and anoxia reduce N-methyl-D-aspartate receptor open probability in turtle cerebrocortex. J. Exp. Biol. 201:289–297PubMedGoogle Scholar
  21. Chen M., Bullock R., Graham D.I., Frey P., Lowe D., McCulloch J. 1991. Evaluation of a competitive NMDA antagonist (D-CPPene) in feline focal cerebral ischemia. Ann. Neurol. 30:62–70CrossRefPubMedGoogle Scholar
  22. Chen C.C., England S., Akopian A.N., Wood J.N. 1998. A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. USA 95:10240–10245CrossRefPubMedGoogle Scholar
  23. Chen C.C., Zimmer A., Sun W.H., Hall J., Brownstein M.J., Zimmer A. 2002. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. USA 99:8992–8997PubMedGoogle Scholar
  24. Chesler M. 1990. The regulation and modulation of pH in the nervous system. Prog. Neurobiol. 34:401–427CrossRefPubMedGoogle Scholar
  25. Choi D.W. 1988a. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends. Neurosci. 11:465–469CrossRefGoogle Scholar
  26. Choi D.W. 1988b. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634CrossRefGoogle Scholar
  27. Choi D.W. 1992. Excitotoxic cell death. J. Neurobiol. 23:1261–1276CrossRefPubMedGoogle Scholar
  28. Choi D.W., Koh J.Y., Peters S. 1988. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8:185–196PubMedGoogle Scholar
  29. Choi D.W., Rothman S.M. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13:171–182CrossRefPubMedGoogle Scholar
  30. Chu X.P., Miesch J., Johnson M., Root L., Zhu X.M., Chen D., Simon R.P., Xiong Z.G. 2002a. Proton-gated channels in PC12 cells. J. Neurophysiol. 87:2555–2561Google Scholar
  31. Chu X.P., Wemmie J.A., Wang W.Z., Zhu X.M., Saugstad J.A., Price M.P., Simon R.P., Xiong Z.G. 2004. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24:8678–8689CrossRefPubMedGoogle Scholar
  32. Chu X.P., Zhu X.M., Chen D., Simon R.P., Xiong Z.G. 2002b. Metabolic inhibition enhances the activities of acid-sensing ion channels. Soc. Neurosci. Abstr. 95.10Google Scholar
  33. Corey D.P., Garcia-Anoveros J. 1996. Mechanosensation and the DEG/ENaC ion channels. Science 273:323–324PubMedGoogle Scholar
  34. Coyle J.T., Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695PubMedGoogle Scholar
  35. Crowell J.W., Kaufmann B.N. 1961. Changes in tissue pH after circulatory arrest. Am. J. Physiol. 200:743–745PubMedGoogle Scholar
  36. Curtis D.R., Watkins J.C. 1960. Acidic amino acids with strong excitatory actions on mammalian neurones. J. Physiol. 166:1–14Google Scholar
  37. De La Rosa D.A., Krueger S.R., Kolar A., Shao D., Fitzsimonds R.M., Canessa C.M. 2003. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. 546:77–87CrossRefGoogle Scholar
  38. De Weille J., Bassilana F., Lazdunski M., Waldmann R. 1998. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett. 433:257–260CrossRefPubMedGoogle Scholar
  39. Diochot S., Baron A., Rash L.D., Deval E., Escoubas P., Scarzello S., Salinas M., Lazdunski M. 2004. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J. 23:1516–1525CrossRefPubMedGoogle Scholar
  40. Du C., Hu R., Csernansky C.A., Hsu C.Y., Choi D.W. 1996. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J. Cereb. Blood Flow Metab. 16:195–201CrossRefPubMedGoogle Scholar
  41. Escoubas P., De Weille J.R., Lecoq A., Diochot S., Waldmann R., Champigny G., Moinier D., Menez A., Lazdunski M. 2000. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275:25116–25121CrossRefPubMedGoogle Scholar
  42. Ettaiche M., Guy N., Hofman P., Lazdunski M., Waldmann R. 2004. Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J. Neurosci. 24:1005–1012CrossRefPubMedGoogle Scholar
  43. Gao J., Duan B., Wang D., Deng X., Zhang G., Xu L., Xu T.L. 2005. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646CrossRefPubMedGoogle Scholar
  44. Garcia-Anoveros J., Derfler B., Neville-Golden J., Hyman B.T., Corey D.P. 1997. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc. Natl. Acad. Sci. USA 94:1459–1464CrossRefPubMedGoogle Scholar
  45. Gasic G.P., Hollmann M. 1992. Molecular neurobiology of glutamate receptors. Annu. Rev. Physiol. 54:507–536CrossRefPubMedGoogle Scholar
  46. Giffard R.G., Monyer H., Choi D.W. 1990a. Selective vulnerability of cultured cortical glia to injury by extracellular acidosis. Brain Res. 530:138–141CrossRefGoogle Scholar
  47. Giffard R.G., Monyer H., Christine C.W., Choi D.W. 1990b. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506:339–342CrossRefGoogle Scholar
  48. Gladstone D.J., Black S.E., Hakim A.M. 2002. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136CrossRefPubMedGoogle Scholar
  49. Goldman S.A., Pulsinelli W.A., Clarke W.Y., Kraig R.P., Plum F. 1989. The effects of extracellular acidosis on neurons and glia in vitro. J. Cereb. Blood Flow Metab. 9:471–477PubMedGoogle Scholar
  50. Grabb M.C., Choi D.W. 1999. Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J. Neurosci. 19:1657–1662PubMedGoogle Scholar
  51. Grantyn R., Perouansky M., Rodriguez-Tebar A., Lux H.D. 1989. Expression of depolarizing voltage- and transmitter-activated currents in neuronal precursor cells from the rat brain is preceded by a proton- activated sodium current. Brain Res. Dev. Brain Res. 49:150–155CrossRefPubMedGoogle Scholar
  52. Grunder S., Geissler H.S., Bassler E.L., Ruppersberg J.P. 2000. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11:1607–1611PubMedCrossRefGoogle Scholar
  53. Hillered L., Smith M.L., Siesjo B.K. 1985. Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. J. Cereb. Blood Flow Metab. 5:259–266PubMedGoogle Scholar
  54. Hoyte L., Barber P.A., Buchan A.M., Hill M.D. 2004. The rise and fall of NMDA antagonists for ischemic stroke. Curr. Mol. Med. 4:131–136CrossRefPubMedGoogle Scholar
  55. Hsu M., Sik A., Gallyas F., Horvath Z., Buzsaki G. 1994. Short-term and long-term changes in the postischemic hippocampus. Ann. N. Y. Acad. Sci. 743:121–139PubMedGoogle Scholar
  56. Huang Y., McNamara J.O. 2004. Ischemic stroke: “acidotoxicity” is a perpetrator. Cell 118:665–666CrossRefPubMedGoogle Scholar
  57. Ikonomidou C., Stefovska V., Turski L. 2000. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc. Natl. Acad. Sci. USA 97:12885–12890CrossRefPubMedGoogle Scholar
  58. Ikonomidou C., Turski L. 2002. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1:383–386CrossRefPubMedGoogle Scholar
  59. Immke D.C., McCleskey E.W. 2001. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat. Neurosci. 4:869–870CrossRefPubMedGoogle Scholar
  60. Immke D.C., McCleskey E.W. 2003. Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84CrossRefPubMedGoogle Scholar
  61. Johnson M.B., Jin K., Minami M., Chen D., Simon R.P. 2001. Global ischemia induces expression of acid-sensing ion channel 2a in rat brain. J. Cereb. Blood Flow Metab. 21:734–740CrossRefPubMedGoogle Scholar
  62. Kaku D.A., Giffard R.G., Choi D.W. 1993. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260:1516–1518PubMedGoogle Scholar
  63. Kalimo H., Rehncrona S., Soderfeldt B., Olsson Y., Siesjo B.K. 1981. Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J. Cereb. Blood Flow Metab. 1:313–327PubMedGoogle Scholar
  64. Kimelberg H.K., Barron K.D., Bourke R.S., Nelson L.R., Cragoe E.J. 1990. Brain anti-cytoxic edema agents. Prog. Clin. Biol. Res. 361:363–385PubMedGoogle Scholar
  65. Kleyman T.R., Cragoe E.J., Jr. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21CrossRefGoogle Scholar
  66. Kovalchuk Y., Krishtal O.A., Nowycky M.C. 1990. The proton-activated inward current of rat sensory neurons includes a calcium component. Neurosci. Lett. 115:237–242CrossRefPubMedGoogle Scholar
  67. Kraig R.P., Petito C.K., Plum F., Pulsinelli W.A. 1987. Hydrogen ions kill brain at concentrations reached in ischemia. J. Cereb. Blood Flow Metab. 7:379–386PubMedGoogle Scholar
  68. Kraig R.P., Pulsinelli W.A., Plum F. 1985. Hydrogen ion buffering during complete brain ischemia. Brain Res. 342:281–290CrossRefPubMedGoogle Scholar
  69. Krishtal O. 2003. The ASICs: signaling molecules? Modulators? Trends Neurosci. 26:477–483CrossRefPubMedGoogle Scholar
  70. Krishtal O.A., Pidoplichko V.I. 1980. A receptor for protons in the nerve cell membrane. Neuroscience 5:2325–2327CrossRefPubMedGoogle Scholar
  71. Krishtal O.A., Pidoplichko V.I. 1981. A receptor for protons in the membrane of sensory neurons may participate in nociception. Neuroscience 6:2599–2601CrossRefPubMedGoogle Scholar
  72. Kristian T., Katsura K., Gido G., Siesjo B.K. 1994. The influence of pH on cellular calcium influx during ischemia. Brain Res. 641:295–302CrossRefPubMedGoogle Scholar
  73. Krnjevic K. 1970. Glutamate and gamma-aminobutyric acid in brain. Nature 228:119–124CrossRefPubMedGoogle Scholar
  74. Lee J.M., Zipfel G.J., Choi D.W. 1999. The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–14PubMedGoogle Scholar
  75. Li M., Xiong Z.G. 2005. Developmental changes of acid-sensing ion channels in cultured mouse cortical neurons. Soc. Neurosci. Abstr. 957.9Google Scholar
  76. Lin W., Ogura T., Kinnamon S.C. 2002. Acid-activated cation currents in rat vallate taste receptor cells. J. Neurophysiol. 88:133–141PubMedGoogle Scholar
  77. Lingueglia E., De Weille J.R., Bassilana F., Heurteaux C., Sakai H., Waldmann R., Lazdunski M. 1997. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272:29778–29783CrossRefPubMedGoogle Scholar
  78. Ljunggren B., Norberg K., Siesjo B.K. 1974. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia. Brain Res. 77:173–186CrossRefPubMedGoogle Scholar
  79. Longa E.Z., Weinstein P.R., Carlson S., Cummins R. 1989. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedGoogle Scholar
  80. Lutz P.L., Milton S.L. 2004. Negotiating brain anoxia survival in the turtle. J. Exp. Biol. 207:3141–3147CrossRefPubMedGoogle Scholar
  81. McDonald J.W., Bhattacharyya T., Sensi S.L., Lobner D., Ying H.S., Canzoniero L.M., Choi D.W. 1998. Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J. Neurosci. 18:6290–6299PubMedGoogle Scholar
  82. Mori H., Mishina M. 1995. Structure and function of the NMDA receptor channel. Neuropharmacology 34:1219–1237CrossRefPubMedGoogle Scholar
  83. Murphy E.J., Horrocks L.A. 1993. Mechanisms of hypoxic and ischemic injury. Use of cell culture models. Mol. Chem. Neuropathol. 19:95–106PubMedCrossRefGoogle Scholar
  84. Nakanishi S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603PubMedGoogle Scholar
  85. Nedergaard M., Goldman S.A., Desai S., Pulsinelli W.A. 1991b. Acid-induced death in neurons and glia. J. Neurosci. 11:2489–2497Google Scholar
  86. Nedergaard M., Kraig R.P., Tanabe J., Pulsinelli W.A. 1991a. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am. J. Physiol. 260:R581–R588Google Scholar
  87. Nicholls D., Attwell D. 1990. The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11:462–467CrossRefPubMedGoogle Scholar
  88. Olney J., Price M., Salles K.S., Labruyere J., Frierdich G. 1987. MK-801 powerfully protects against N-methyl aspartate neurotoxicity. Eur. J. Pharmacol. 141:357–361CrossRefPubMedGoogle Scholar
  89. Olney J.W., Ho O.L., Rhee V. 1971. Cytotoxic effects of acidic and sulphur-containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14:61–76CrossRefPubMedGoogle Scholar
  90. Page A.J., Brierley S.M., Martin C.M., Price M.P., Symonds E., Butler R., Wemmie J.A., Blackshaw L.A. 2005. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54:1408–1415CrossRefPubMedGoogle Scholar
  91. Pignataro G., Simon R.P., Xiong Z.G. 2005. Neuroprotective time window of ASIC1a blockade in mouse model of focal cerebral ischemia. Soc. Neurosci. Abstr. 669.14Google Scholar
  92. Price M.P., Lewin G.R., McIlwrath S.L., Cheng C., Xie J., Heppenstall P.A., Stucky C.L., Mannsfeldt A.G., Brennan T.J., Drummond H.A., Qiao J., Benson C.J., Tarr D.E., Hrstka R.F., Yang B., Williamson R.A., Welsh M.J. 2000. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011CrossRefPubMedGoogle Scholar
  93. Price M.P., McIlwrath S.L., Xie J., Cheng C., Qiao J., Tarr D.E., Sluka K.A., Brennan T.J., Lewin G.R., Welsh M.J. 2001. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083CrossRefPubMedGoogle Scholar
  94. Price M.P., Snyder P.M., Welsh M.J. 1996. Cloning and expression of a novel human brain Na+ channel. J. Biol. Chem. 271:7879–7882CrossRefPubMedGoogle Scholar
  95. Rehncrona S. 1985. Brain acidosis. Ann. Emerg. Med. 14:770–776CrossRefPubMedGoogle Scholar
  96. Rehncrona S., Hauge H.N., Siesjo B.K. 1989. Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J. Cereb. Blood Flow Metab. 9:65–70PubMedGoogle Scholar
  97. Rod M.R., Auer R.N. 1989. Pre- and post-ischemic administration of dizocilpine (MK-801) reduces cerebral necrosis in the rat. Can. J. Neurol. Sci. 16:340–344PubMedGoogle Scholar
  98. Rosenblum W.I. 1997. Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia. J. Neurotrauma 14:313–326PubMedCrossRefGoogle Scholar
  99. Rothman S.M., Olney J.W. 1995. Excitotoxicity and the NMDA receptor–Still lethal after eight years. Trends Neurosci. 18:57–58CrossRefPubMedGoogle Scholar
  100. Sapolsky R.M., Trafton J., Tombaugh G.C. 1996. Excitotoxic neuron death, acidotic endangerment, and the paradox of acidotic protection. Adv. Neurol. 71:237–244PubMedGoogle Scholar
  101. Sattler R., Tymianski M. 2001. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24:107–129CrossRefPubMedGoogle Scholar
  102. Sattler R., Xiong Z., Lu W.Y., Hafner M., MacDonald J.F., Tymianski M. 1999. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848CrossRefPubMedGoogle Scholar
  103. Sattler R., Xiong Z., Lu W.Y., MacDonald J.F., Tymianski M. 2000. Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J. Neurosci. 20:22–33PubMedGoogle Scholar
  104. Saugstad J.A., Roberts J.A., Dong J., Zeitouni S., Evans R.J. 2004. Analysis of the membrane topology of the acid-sensing ion channel 2a. J. Biol. Chem. 279:55514–55519CrossRefPubMedGoogle Scholar
  105. Siemkowicz E., Hansen A.J. 1981. Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke 12:236–240PubMedGoogle Scholar
  106. Siesjo B.K. 1988. Acidosis and ischemic brain damage. Neurochem. Pathol. 9:31–88PubMedGoogle Scholar
  107. Siesjo B.K. 1992. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg. 77:337–354PubMedCrossRefGoogle Scholar
  108. Siesjo B.K., Katsura K., Kristian T. 1996. Acidosis-related damage. Adv. Neurol. 71:209–233PubMedGoogle Scholar
  109. Simon R.P., Swan J.H., Griffiths T., Meldrum B.S. 1984. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852PubMedGoogle Scholar
  110. Simonian N.A., Coyle J.T. 1996. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36:83–106CrossRefPubMedGoogle Scholar
  111. Sluka K.A., Price M.P., Breese N.M., Stucky C.L., Wemmie J.A., Welsh M.J. 2003. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239CrossRefPubMedGoogle Scholar
  112. Stenzel-Poore M.P., Stevens S.L., Xiong Z., Lessov N.S., Harrington C.A., Mori M., Meller R., Rosenzweig H.L., Tobar E., Shaw T.E., Chu X., Simon R.P. 2003. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362:1028–1037CrossRefPubMedGoogle Scholar
  113. Sucher N.J., Awobuluyi M., Choi Y.B., Lipton S.A. 1996. NMDA receptors: from genes to channels. Trends. Pharmacol. Sci. 17:348–355CrossRefPubMedGoogle Scholar
  114. Sucher N.J., Lipton S.A., Dreyer E.B. 1997. Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res. 37:3483–3493CrossRefPubMedGoogle Scholar
  115. Sutherland S.P., Benson C.J., Adelman J.P., McCleskey E.W. 2001. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl. Acad. Sci. USA 98:711–716CrossRefPubMedGoogle Scholar
  116. Swanson R.A., Farrell K., Simon R.P. 1995. Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J Cereb. Blood. Flow. Metab. 15:417–424PubMedGoogle Scholar
  117. Sweeney M.I., Yager J.Y., Walz W., Juurlink B.H. 1995. Cellular mechanisms involved in brain ischemia. Can. J. Physiol. Pharmacol. 73:1525–1535PubMedGoogle Scholar
  118. Tang C.M., Dichter M., Morad M. 1990. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. USA 87:6445–6449PubMedGoogle Scholar
  119. Thorn W., Heitmann R. 1954. Hydrogen ion concentration of cerebral cortex of rabbit in situ during peracute total ischemia, pure anoxia and during recuperation. Pfluegers Arch. 258:501–510CrossRefGoogle Scholar
  120. Tombaugh G.C., Sapolsky R.M. 1993. Evolving concepts about the role of acidosis in ischemic neuropathology. J. Neurochem. 61:793–803PubMedGoogle Scholar
  121. Traynelis S.F., Cull-Candy S.G. 1990. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350CrossRefPubMedGoogle Scholar
  122. Tymianski M. 1996. Cytosolic calcium concentrations and cell death in vitro. Adv. Neurol. 71:85–105PubMedGoogle Scholar
  123. Tymianski M., Charlton M.P., Carlen P.L., Tator C.H. 1993. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13:2085–2104PubMedGoogle Scholar
  124. Ueno S., Nakaye T., Akaike N. 1992. Proton-induced sodium current in freshly dissociated hypothalamic neurones of the rat. J. Physiol. 447:309–327PubMedGoogle Scholar
  125. Ugawa S. 2003. Identification of sour-taste receptor genes. Anat. Sci. Int. 78:205–210CrossRefPubMedGoogle Scholar
  126. Ugawa S., Ueda T., Ishida Y., Nishigaki M., Shibata Y., Shimada S. 2002. Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J. Clin. Invest. 110:1185–1190CrossRefPubMedGoogle Scholar
  127. Ugawa S., Yamamoto T., Ueda T., Ishida Y., Inagaki A., Nishigaki M., Shimada S. 2003. Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel. J. Neurosci. 23:3616–3622PubMedGoogle Scholar
  128. Varming T. 1999. Proton-gated ion channels in cultured mouse cortical neurons. Neuropharmacology 38:1875–1881CrossRefPubMedGoogle Scholar
  129. Wahlgren N.G., Ahmed N. 2004. Neuroprotection in cerebral ischaemia: facts and fancies–the need for new approaches. Cerebrovasc. Dis. 17(Suppl 1):153–166CrossRefPubMedGoogle Scholar
  130. Waldmann R., Bassilana F., De Weille J., Champigny G., Heurteaux C., Lazdunski M. 1997b. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272:20975–20978CrossRefGoogle Scholar
  131. Waldmann R., Champigny G., Bassilana F., Heurteaux C., Lazdunski M. 1997a. A proton-gated cation channel involved in acid-sensing. Nature 386:173–177CrossRefGoogle Scholar
  132. Waldmann R., Champigny G., Voilley N., Lauritzen I., Lazdunski M. 1996. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271:10433–10436CrossRefPubMedGoogle Scholar
  133. Waldmann R., Lazdunski M. 1998. H+-gated cation channels: neuronal acid sensors in the ENaC/DEG family of ion channels. Curr. Opin. Neurobiol. 8:418–424CrossRefPubMedGoogle Scholar
  134. Wemmie J.A., Askwith C.C., Lamani E., Cassell M.D., Freeman J.H., Jr., Welsh M.J. 2003. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J. Neurosci. 23:5496–5502PubMedGoogle Scholar
  135. Wemmie J.A., Chen J., Askwith C.C., Hruska-Hageman A.M., Price M.P., Nolan B.C., Yoder P.G., Lamani E., Hoshi T., Freeman J.H., Welsh M.J. 2002. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477CrossRefPubMedGoogle Scholar
  136. Wieloch T. 1985. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D- aspartate antagonist. Science 230:681–683PubMedGoogle Scholar
  137. Wu L.J., Duan B., Mei Y.D., Gao J., Chen J.G., Zhuo M., Xu L., Wu M., Xu T.L. 2004. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J. Biol. Chem. 279:43716–43724CrossRefPubMedGoogle Scholar
  138. Xiong Z.G., Zhu X.M., Chu X.P., Minami M., Hey J., Wei W.L., MacDonald J.F., Wemmie J.A., Price M.P., Welsh M.J., Simon R.P. 2004. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698CrossRefPubMedGoogle Scholar
  139. Yermolaieva O., Leonard A.S., Schnizler M.K., Abboud F.M., Welsh M.J. 2004. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. USA 101:6752–6757CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Robert S. Dow Neurobiology LaboratoriesLegacy Clinical Research CenterPortlandUSA

Personalised recommendations