Advertisement

K+ Channels in Apoptosis

  • E.D. Burg
  • C.V. Remillard
  • J.X.-J. YuanEmail author
Article

Abstract

A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K+ across the cell membrane and that of the mitochondria via integral K+-permeable channels. We describe the different types of K+ channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K+ channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.

Keywords

Apoptosis K+ channels Plasma membrane Mitochondria 

Notes

Acknowledgement

Research and data presented here were supported in part by NIH/NHLBI grants (HL 064945, HL 054043, HL 66012, HL 69758, and HL66941).

References

  1. Aguilar-Bryan L., Nichols C.G., Wechsler S.W., Clement J.P., Boyd A.E., González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D.A. 1995. Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426PubMedGoogle Scholar
  2. Aickin C.C., Brading A.F. 1982. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes. J. Physiol. 326:139–154PubMedGoogle Scholar
  3. Akao M., Ohler A., O’Rourke B., Marban E. 2001. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ. Res. 88:1267–1275PubMedGoogle Scholar
  4. Allbritton N.L., Verret C.R., Wolley R.C., Eisen H.N. 1988. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J. Exp. Med. 167:514–527PubMedGoogle Scholar
  5. Ashcroft F.M. 2005. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115:2047–2058PubMedGoogle Scholar
  6. Ashcroft F.M., Kakei M. 1989. ATP-sensitive K+ channels in rat pancreatic beta-cells: modulation by ATP and Mg2+ ions. J. Physiol. 416:349–367PubMedGoogle Scholar
  7. Bähring R., Milligan C.J., Vardanyan V., Engeland B., Young B.A., Dannenberg J., Waldschutz R., Edwards J.P., Wray D., Pongs O. 2001. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kvb subunits. J. Biol. Chem. 276:22923–22929PubMedGoogle Scholar
  8. Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. 1998. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282:1141–1144PubMedGoogle Scholar
  9. Beech D.J., Zhang H., Nakao K., Bolton T.B. 1993. K-channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Br. J. Pharmacol. 110:573–582PubMedGoogle Scholar
  10. Bock J., Szabó I., Jekle A., Gulbins E. 2002. Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem. Biophys. Res. Commun. 295:526–531PubMedGoogle Scholar
  11. Bonev A.D., Nelson M.T. 1993. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am. J. Physiol. 264:C1190–C1200PubMedGoogle Scholar
  12. Bortner C.D., Cidlowski J.A. 1999. Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J. Biol. Chem. 274:21953–21962PubMedGoogle Scholar
  13. Bortner C.D., Gómez-Angelats M., Cidlowski J.A. 2001. Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J. Biol. Chem. 276:4304–4314PubMedGoogle Scholar
  14. Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1997. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 272:32436–32442PubMedGoogle Scholar
  15. Brenner R., Jegla T.J., Wickenden A., Liu Y., Aldrich R.W. 2000. Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275:6453–6461PubMedGoogle Scholar
  16. Brevnova E.E., Platoshyn O., Zhang S., Yuan J.X.-J. 2004. Overexpression of human KCNA5 increases I K(V) and enhances apoptosis. Am. J. Physiol. 287:C715–C722Google Scholar
  17. Brustovetsky T., Shalbuyeva N., Brustovetsky N. 2005. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. J. Physiol. 568:47–59PubMedGoogle Scholar
  18. Buckler K.J., Williams B.A., Honoré E. 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525:135–142PubMedGoogle Scholar
  19. Butler A., Tsunoda S., McCobb D.P., Wei A., Salkoff L. 1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224PubMedGoogle Scholar
  20. Butler A., Wei A.G., Baker K., Salkoff L. 1989. A family of putative potassium channel genes in Drosophila. Science 243:943–947PubMedGoogle Scholar
  21. Cain K., Langlais C., Sun X.-M., Brown D.G., Cohen G.M. 2001. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J. Biol. Chem. 276:41985–41990PubMedGoogle Scholar
  22. Caley A.J., Gruss M., Franks N.P. 2005. The effects of hypoxia on the modulation of human TREK-1 potassium channels. J. Physiol. 562:205–212PubMedGoogle Scholar
  23. Cao C.-M., Xia Q., Gao Q., Chen M., Wong T.-M. 2005. Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J. Pharmacol. Exp. Ther. 312:644–650PubMedGoogle Scholar
  24. Chanda B., Asamoah O.K., Blunck R., Roux B., Bezanilla F. 2005. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856PubMedGoogle Scholar
  25. Chandy K.G., Gutman G.A. 1995. Voltage-gated K+ channels. In: R.A. North (eds). Ligand-, Voltage-Gated Ion Channels. CRC, Boca Raton, FL pp. 1–71Google Scholar
  26. Chang S.H., Phelps P.C., Berezesky I.K., Ebersberger M.L., Jr., Trump B.F. 2000. Studies on the mechanisms and kinetics of apoptosis induced by microinjection of cytochrome c in rat kidney tubule epithelial cells (NRK-52E). Am. J. Pathol. 156:637–649PubMedGoogle Scholar
  27. Choe S. 2002. Potassium channel structures. Nat. Rev. Neurosci. 3:115–121PubMedGoogle Scholar
  28. Clapp L.H. 1995. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes. Cardiovasc. Res. 30:460–468PubMedGoogle Scholar
  29. Clapp L.H., Gurney A.M. 1992. ATP-sensitive K+ channels regulate resting potential of pulmonary arterial smooth muscle cells. Am. J. Physiol. 262:H916–H920PubMedGoogle Scholar
  30. Coetzee W.A., Amarillo Y., Chiu J., Chow A., Lau D., McCormack T., Moreno H., Nadal M.S., Ozaita A., Pountney D., Saganich M., Vega-Saenz de Miera E., Rudy B. 1999. Molecular diversity of K+ channels. Ann. N.Y. Acad. Sci. 868:233–285PubMedGoogle Scholar
  31. Conway M.A., Nelson M.T., Brayden J.E. 1994. 2-Deoxyglucose-induced vasodilation and hyperpolarization in rat coronary artery are reversed by glibenclamide. Am. J. Physiol. 266:H1322–H1326PubMedGoogle Scholar
  32. Coppock E.A., Tamkun M.M. 2001. Differential expression of KV channel a- and b-subunits in the bovine pulmonary arterial circulation. Am. J. Physiol. 281:L1350–L1360Google Scholar
  33. Cox D.H., Aldrich R.W. 2000. Role of the b1 subunit of large-conductance Ca2+-activated K+ channel gating energetics: Mechanisms of enhanced Ca2+ sensitivity. J. Gen. Physiol. 116:411–432PubMedGoogle Scholar
  34. Czirják G., Enyedi P. 2002. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J. Biol. Chem. 277:5426–5432PubMedGoogle Scholar
  35. Dallaporta B., Hirsch T., Susin S.A., Zamzami N., Larochette N., Brenner C., Marzo I., Kroemer G. 1998. Potassium leakage during the apoptotic degradation phase. J. Immunol. 160:5605–5615PubMedGoogle Scholar
  36. Dallaporta B., Marchetti P., de Pablo M.A., Maisse C., Duc H.T., Metivier D., Zamzami N., Geuskens M., Kroemer G. 1999. Plasma membrane potential in thymocyte apoptosis. J. Immunol. 162:6534–6542PubMedGoogle Scholar
  37. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. 1992. Features of apoptotic cells measured by flow cytometry. Cytometry 13:795–808PubMedGoogle Scholar
  38. Dębska G., May R., Kicinska A., Szewczyk A., Elger C.E., Kunz W.S. 2001. Potassium channel openers depolarize hippocampal mitochondria. Brain Res. 892:42–50PubMedGoogle Scholar
  39. Delmas P., Brown D.A. 2005. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6:850–862PubMedGoogle Scholar
  40. Dispersyn G., Borgers M. 2001. Apoptosis in the heart: About programmed cell death and survival. News Physiol. Sci. 16:41–47PubMedGoogle Scholar
  41. Doupnik C.A., Davidson N., Lester H.A. 1995. The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5:268–277PubMedGoogle Scholar
  42. Doyle D.A., Morais Cabral J., Pfuetzner R.A., Kuo A., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77PubMedGoogle Scholar
  43. Duprat F., Girard C., Jarretou G., Lazdunski M. 2005. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J. Physiol. 562:235–244PubMedGoogle Scholar
  44. Duprat F., Lesage F., Fink M., Reyes R., Heurteaux C., Lazdunski M. 1997. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16:5464–5471PubMedGoogle Scholar
  45. Ekhterae D., Lin Z., Lundberg M.S., Crow M.T., Brosius F.C. III., Núñez G. 1999. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ. Res. 85:e70–e77PubMedGoogle Scholar
  46. Ekhterae D., Platoshyn O., Krick S., Yu Y., McDaniel S.S., Yuan J.X.-J. 2001. Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am. J. Physiol. 281:C157–C165Google Scholar
  47. Ekhterae D., Platoshyn O., Zhang S., Remillard C.V., Yuan J.X.-J. 2003. Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am. J. Physiol. 284:C1405–C1410Google Scholar
  48. Fernández-Fernández J.M., Nobles M., Currid A., Vázquez E., Valverde M.A. 2002. Maxi K+ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. Am. J. Physiol. 283:C1705–C1714Google Scholar
  49. Ferri K.F., Kroemer G.. 2001. Mitochondria - the suicide organelles. BioEssays 23:111–115PubMedGoogle Scholar
  50. Ficker E., Taglialatela M., Wible B.A., Henley C.M., Brown A.M. 1994. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072PubMedGoogle Scholar
  51. Fitzpatrick C.M., Shi Y., Hutchins W.C., Su J., Gross G.J., Ostadal B., Tweddell J.S., Baker J.E. 2005. Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and KATP channels. Am. J. Physiol. 288:H62–H68Google Scholar
  52. Forbes R.A., Steenbergen C., Murphy E. 2001. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ. Res. 88:802–809PubMedGoogle Scholar
  53. Ganetzky B., Robertson G.A., Wilson G.F., Trudeau M.C., Titus S.A. 1999. The Eag family of K+ channels in Drosophila and mammals. Ann. N.Y. Acad. Sci. 868:356–369PubMedGoogle Scholar
  54. Garlid K.D. 1996. Cation transport in mitochondria - the potassium cycle. Biochim. Biophys. Acta 1275:123–126PubMedGoogle Scholar
  55. Garlid K.D., Paucek P. 2001. The mitochondrial potassium cycle. IUBMB Life 52:153–158PubMedCrossRefGoogle Scholar
  56. Gómez-Angelats M., Bortner C.D., Cidlowski J.A. 2000. Protein kinase C (PKC) inhibits Fas receptor-induced apoptosis through modulation of the loss of K+ and cell shrinkage. J. Biol. Chem. 275:19609–19619PubMedGoogle Scholar
  57. Gong J., Xu J., Bezanilla M., van Huizen R., Derin R., Li M. 1999. Differential stimulation of PKC phosphorylation of potassium channels by ZIP1 and ZIP2. Science 285:1565–1569PubMedGoogle Scholar
  58. Goodman Y., Mattson M.P. 1996. K+ channel openers protect hippocampal neurons against oxidative injury and amyloid b-peptide toxicity. Brain Res. 706:328–332PubMedGoogle Scholar
  59. Green D.R., Evan G.I. 2002. A matter of life and death. Cancer Cell. 1:19–30PubMedGoogle Scholar
  60. Grishin A., Ford H., Wang J., Li H., Salvador-Recatala V., Levitan E.S., Zaks-Makhina E. 2005. Attenuation of apoptosis in enterocytes by blockade of potassium channels. Am. J. Physiol. 289:G815–G821Google Scholar
  61. Gross A., Jockel J., Wei M.C., Korsmeyer S.J. 1998. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17:3878–3885PubMedGoogle Scholar
  62. Gu N., Vervaeke K., Hu H., Storm J.F. 2005. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J. Physiol. 566:689–715PubMedGoogle Scholar
  63. Gulbis J.M., Zhou M., Mann S., MacKinnon R. 2000. Structure of the cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289:123–127PubMedGoogle Scholar
  64. Gurney A.M., Osipenko O.N., MacMillan D., Kempsill F.E.J. 2002. Potassium channels underlying the resting potential of pulmonary artery smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 29:330–333PubMedGoogle Scholar
  65. Gurney A.M., Osipenko O.N., MacMillan D., McFarlane K.M., Tate R.J., Kempsill F.E. 2003. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ. Res. 93:957–964PubMedGoogle Scholar
  66. Hanner M., Schmalhofer W.A., Munujos P., Knaus H.G., Kaczorowski G.J., Garcia M.L. 1997. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc. Natl. Acad. Sci. USA 94:2853–2858PubMedGoogle Scholar
  67. Hille B. 2001. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  68. Ho K., Nichols C.G., Lederer W.J., Lytton J., Vassilev P.M., Kanazirska M.V., Hebert S.C. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38PubMedGoogle Scholar
  69. Holmuhamedov E.L., Jovanovic’ S., Dzeja P.P., Jovanovic’ A., Terzic A. 1998. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am. J. Physiol. 275:H1567–H1576PubMedGoogle Scholar
  70. Huang C.L., Feng S., Hilgemann D.W. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbg. Nature 391:803–806PubMedGoogle Scholar
  71. Hughes F.M., Jr., Bortner C.D., Purdy G.D., Cidlowski J.A. 1997. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J. Biol. Chem. 272:30567–30576PubMedGoogle Scholar
  72. Hughes F.M., Jr., Cidlowski J.A. 1998. Glucocorticoid-induced thymocyte apoptosis: protease-dependent activation of cell shrinkage and DNA fragmentation. J. Steroid Biochem. Mol. Biol. 65:207–217PubMedGoogle Scholar
  73. Hugnot J.-P., Salinas M., Lesage F., Guillemare E., de Weille J., Heurteaux C., Mattei M.G., Lazdunski M. 1996. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J. 15:3322–3331PubMedGoogle Scholar
  74. Hulme J.T., Coppock E.A., Felipe A., Martens J.R., Tamkun M.M. 1999. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ. Res. 85:489–497PubMedGoogle Scholar
  75. Inagaki N., Gonoi T., Clement J.P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. 1995. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170PubMedGoogle Scholar
  76. Inai Y., Yabuki M., Kanno T., Akiyama J., Yasuda T., Utsumi K. 1997. Valinomycin induces apoptosis of ascites hepatoma cells (AH-130) in relation to mitochondrial membrane potential. Cell Struct. Funct. 22:555–563PubMedCrossRefGoogle Scholar
  77. Inoue I., Nagase H., Kishi K., Higuti T. 1991. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247PubMedGoogle Scholar
  78. Isom L.L., De Jongh K.S., Catterall W.A. 1994. Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–1194PubMedGoogle Scholar
  79. Johnson R.P., O’Kelly I.M., Fearon I.M. 2004. System-specific O2 sensitivity of the tandem pore domain K+ channel TASK-1. Am. J. Physiol. 286:C391–C397Google Scholar
  80. Keen J.E., Khawaled R., Farrens D.L., Neelands T., Rivard A., Bond C.T., Janowsky A., Fakler B., Adelman J.P., Maylie J. 1999. Domains responsible for constitutive and Ca2+-dependent Interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19:8830–8838PubMedGoogle Scholar
  81. Keller S.H., Platoshyn O., Yuan J.X.-J. 2005. Long QT syndrome-associated I593R mutation in HERG potassium channel activates ER stress pathways. Cell Biochem. Biophys. 43:365–378PubMedGoogle Scholar
  82. Kerschensteiner D., Soto F., Stocker M. 2005. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier a-subunits. Proc. Natl. Acad. Sci. USA 102:6160–6165PubMedGoogle Scholar
  83. Kluck R.M., Bossy-Wetzel E., Green D.R., Newmeyer D.D. 1997. The release of cytochrome C from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136PubMedGoogle Scholar
  84. Knaus H.G., Garcia-Calvo M., Kaczorowski G.J., Garcia M.L. 1994. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J. Biol. Chem. 269:3921–3924PubMedGoogle Scholar
  85. Köhler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N.V., Maylie J., Adelman J.P. 1995. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709–1714Google Scholar
  86. Köhler R., Wulff H., Eichler I., Kneifel M., Neumann D., Knorr A., Grgic I., Kämpfe D., Si H., Wibawa J., Real R., Borner K., Brakemeier S., Orzechowski H.-D., Reusch H.-P., Paul M., Chandy K.G., Hoyer J. 2003. Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125PubMedGoogle Scholar
  87. Koni P.A., Khanna R., Chang M.C., Tang M.D., Kaczmarek L.K., Schlichter L.C., Flavella R.A. 2003. Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J. Biol. Chem. 278:39443–39451PubMedGoogle Scholar
  88. Korge P., Honda H.M., Weiss J.N. 2005. K+-dependent regulation of matrix volume improves mitochondrial function under conditions mimicking ischemia-reperfusion. Am. J. Physiol. 289:H66–H77Google Scholar
  89. Kowaltowski A.J., Seetharaman S., Paucek P., Garlid K.D. 2001. Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am. J. Physiol. 280:H649–H657Google Scholar
  90. Kramer J.W., Post M.A., Brown A.M., Kirsch G.E. 1998. Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 a-subunits. Am. J. Physiol. 274:C1501–C1510PubMedGoogle Scholar
  91. Krick S., Platoshyn O., McDaniel S.S., Rubin L.J., Yuan J.X.-J. 2001a. Augmented K+ currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am. J. Physiol. 281:L887–L894Google Scholar
  92. Krick S., Platoshyn O., Sweeney M., Kim H., Yuan J.X.-J. 2001b. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am. J. Physiol. 280:C970–C979Google Scholar
  93. Krick S., Platoshyn O., Sweeney M., McDaniel S.S., Zhang S., Rubin L.J., Yuan J.X.-J. 2002. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am. J. Physiol. 282:H184–H193Google Scholar
  94. Kroemer G., Reed J.C. 2000. Mitochondrial control of cell death. Nat. Med. 6:513–519PubMedGoogle Scholar
  95. Kubo Y., Baldwin T.J., Jan Y.N., Jan L.Y. 1993a. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133Google Scholar
  96. Kubo Y., Reuveny E., Slesinger P.A., Jan Y.N., Jan L.Y. 1993b. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364:802–806Google Scholar
  97. Kuo A., Gulbis J.M., Antcliff J.F., Rahman T., Lowe E.D., Zimmer J., Cuthbertson J., Ashcroft F.M., Ezaki T., Doyle D.A. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926PubMedGoogle Scholar
  98. Kurata H.T., Wang Z., Fedida D. 2004. NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. J. Gen. Physiol. 123:505–520PubMedGoogle Scholar
  99. Lang F., Busch G.L., Ritter M., Völkl H., Waldegger S., Gulbins E., Häussinger D. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78:247–306PubMedGoogle Scholar
  100. Lang P.A., Kaiser S., Myssina S., Wieder T., Lang F., Huber S.M. 2003. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am. J. Physiol. 285:C1553–C1560Google Scholar
  101. Lesage F., Guillemare E., Fink M., Duprat F., Lazdunski M., Romey G., Barhanin J. 1996a. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15:1004–1011Google Scholar
  102. Lesage F., Lazdunski M. 2000. Molecular and functional properties of two-pore-domain potassium channels. Am. J. Physiol. 279:F793–F801Google Scholar
  103. Lesage F., Reyes R., Fink M., Duprat F., Guillemare E., Lazdunski M. 1996b. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J. 15:6400–6407Google Scholar
  104. Lewis A., Hartness M.E., Chapman C.G., Fearon I.M., Meadows H.J., Peers C., Kemp P.J. 2001. Recombinant hTASK1 is an O2-sensitive K+ channel. Biochem. Biophys. Res. Comm. 285:1290–1294PubMedGoogle Scholar
  105. Li P.-F., Maasch C., Haller H., Dietz R., von Harsdorf R. 1999. Requirement for protein kinase C in reactive oxygen species-induced apoptosis of vascular smooth muscle cells. Circulation 100:967–973PubMedGoogle Scholar
  106. Liu D., Lu C., Wan R., Auyeung W.W., Mattson M.P. 2002. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J. Cereb. Blood Flow Metab. 22:431–443PubMedGoogle Scholar
  107. Liu D., Slevin J.R., Lu C., Chan S.L., Hansson M., Elmer E., Mattson M.P. 2003. Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J. Neurochem. 86:966–979PubMedGoogle Scholar
  108. Liu Y., Gao W.D., O’Rourke B., Marban E. 1996. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine - implications for ischemic preconditioning. Circ. Res. 78:443–454PubMedGoogle Scholar
  109. Liu Y., Sato T., O’Rourke B., Marban E. 1998. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469PubMedGoogle Scholar
  110. Liu Y., Sato T., Seharaseyon J., Szewczyk A., O’Rourke B., Marbán E. 1999. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann. N.Y. Acad. Sci. 874:27–37PubMedGoogle Scholar
  111. Long S.B., Campbell E.B., Mackinnon R. 2005a. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903Google Scholar
  112. Long S.B., Campbell E.B., Mackinnon R. 2005b. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908Google Scholar
  113. Lopatin A.N., Makhina E.N., Nichols C.G. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369PubMedGoogle Scholar
  114. Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97:9487–9492PubMedGoogle Scholar
  115. Mandegar M., Remillard C.V., Yuan J.X.-J. 2002. Ion channels in pulmonary arterial hypertension. Prog. Cardiovasc. Dis. 45:81–114PubMedGoogle Scholar
  116. Mann C.L., Bortner C.D., Jewell C.M., Cidlowski J.A. 2001. Glucocorticoid-induced plasma membrane depolarization during thymocyte apoptosis: association with cell shrinkage and degradation of the Na+/K+-adenosine triphosphatase. Endocrinology 142:5059–5068PubMedGoogle Scholar
  117. Martens J.R., Kwak Y.-G., Tamkun M.M. 1999. Modulation of KV channel α/β subunit interactions. Trends Cardiovasc. Med. 9:253–258PubMedGoogle Scholar
  118. Mayr M., Xu Q. 2001. Smooth muscle cell apoptosis in arteriosclerosis. Exp. Gerontol. 36:969–987PubMedGoogle Scholar
  119. McCobb D.P., Fowler N.L., Featherstone T., Lingle C.J., Saito M., Krause J.E., Salkoff L. 1995. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. 269:H767–H777PubMedGoogle Scholar
  120. McLaughlin B., Pal S., Tran M.P., Parsons A.A., Barone F.C., Erhardt J.A., Aizenman E. 2001. p38 Activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J. Neurosci. 21:3303–3311PubMedGoogle Scholar
  121. McMurtry M.S., Archer S.L., Altieri D.C., Bonnet S., Haromy A., Harry G., Bonnet S., Puttagunta L., Michelakis E.D. 2005. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J. Clin. Invest. 115:1479–1491PubMedGoogle Scholar
  122. McMurtry M.S., Bonnet S., Wu X., Dyck J.R.B., Haromy A., Hashimoto K., Michelakis E.D. 2004. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95:830–840PubMedGoogle Scholar
  123. Meera P., Wallner M., Song M., Toro L. 1997. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl. Acad. Sci. USA 94:14066–14071PubMedGoogle Scholar
  124. Montague J.W., Bortner C.D., Hughes F.M., Jr., Cidlowski J.A. 1999. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 64:563–569PubMedGoogle Scholar
  125. Murata M., Akao M., O’Rourke B., Marban E. 2001. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ. Res. 89:891–898PubMedGoogle Scholar
  126. Nelson M.T., Quayle J.M. 1995. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 268:C799–C822PubMedGoogle Scholar
  127. Neylon C.B., Lang R.J., Fu Y., Bobik A., Reinhart P.H. 1999. Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: Relationship between KCa channel diversity and smooth muscle cell function. Circ. Res. 85:e33–e43PubMedGoogle Scholar
  128. Niemeyer M.I., Cid L.P., Barros L.F., Sepúlveda F.V. 2001. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276:43166–43174PubMedGoogle Scholar
  129. Nietsch H.H., Roe M.W., Fiekers J.F., Moore A.L., Lidofsky S.D. 2000. Activation of potassium and chloride channels by tumor necrosis factor a: Role in liver cell death. J. Biol. Chem. 275:20556–20561PubMedGoogle Scholar
  130. Nishida M., MacKinnon R. 2002. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111:957–965PubMedGoogle Scholar
  131. Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148PubMedGoogle Scholar
  132. Ojcius D.M., Zychlinsky A., Zheng L.M., Young J.D. 1991. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp. Cell. Res. 197:43–49PubMedGoogle Scholar
  133. Orio P., Latorre R. 2005. Differential effects of b1 and b2 subunits on BK channel activity. J. Gen. Physiol. 125:395–411PubMedGoogle Scholar
  134. Ottschytsch N., Raes A., Van Hoorick D., Snyders D.J. 2002. Obligatory heterotetramerization of three previously uncharacterized Kv channel a-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99:7986–7991PubMedGoogle Scholar
  135. Ouadid-Ahidouch H., Roudbaraki M., Delcourt P., Ahidouch A., Joury N., Prevarskaya N. 2004. Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am. J. Physiol. 287:C125–C134Google Scholar
  136. Pallotta B.S., Magleby K.L., Barrett J.N. 1981. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293:471–474PubMedGoogle Scholar
  137. Papazian D.M., Schwarz T.L., Tempel B.L., Jan Y.N., Jan L.Y. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753PubMedGoogle Scholar
  138. Patel A.J., Honoré E., Lesage F., Fink M., Romey G., Lazdunski M. 1999a. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426Google Scholar
  139. Patel A.J., Lazdunski M. 2004. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflügers Arch. – Eur. J. Physiol. 448:261–273Google Scholar
  140. Patel A.J., Lazdunski M., Honoré E. 1997. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J. 16:6615–6625PubMedGoogle Scholar
  141. Patel A.J., Lazdunski M., Honoré E. 1999b. Kv2.1/Kv9.3, an ATP-dependent delayed-rectifier K+ channel in pulmonary artery myocytes. Ann. N.Y. Acad. Sci. 868:438–4s41Google Scholar
  142. Pérez-García M.T., López-López J.R., González C. 1999. Kvb1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J. Gen. Physiol. 113:897–907PubMedGoogle Scholar
  143. Platoshyn O., Zhang S., McDaniel S.S., Yuan J.X.-.J. 2002. Cytochrome c activates K+ channels before inducing apoptosis. Am. J. Physiol. 283:C1298–C1305Google Scholar
  144. Posson D.J., Ge P., Miller C., Bezanilla F., Selvin P.R. 2005. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436:848–851PubMedGoogle Scholar
  145. Post M.A., Kirsch G.E., Brown A.M. 1996. Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett. 399:177–182PubMedGoogle Scholar
  146. Pourrier M., Herrera D., Caballero R., Schram G., Wang Z., Nattel S. 2004. The Kv4.2 N-terminal restores fast inactivation and confers KChIP2 modulatory effects on N-terminal-deleted Kv1.4 channels. Pflügers Arch. – Eur. J. Physiol. 449:235–247Google Scholar
  147. Quayle J.M., Dart C., Standen N.B. 1996. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol. 494:715–720PubMedGoogle Scholar
  148. Quayle J.M., Nelson M.T., Standen N.B. 1997. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77:1165–1232PubMedGoogle Scholar
  149. Rasmusson R.L., Wang S., Castellino R.C., Morales M.J., Strauss H.C. 1997. The b subunit, Kvb1.2, acts as a rapid open channel blocker of NH2 terminal deleted Kv1.4 a-subunits. Adv. Exp. Med. Biol. 430:29–37PubMedGoogle Scholar
  150. Remillard C.V., Yuan J.X.-J. 2004. Activation of K+ channels: an essential pathway in programmed cell death. Am. J. Physiol. 286:L49–L67Google Scholar
  151. Rettig J., Heinemann S.H., Wunder F., Lorra C., Parcej D.N., Dolly J.O., Pongs O. 1994. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369:289–294PubMedGoogle Scholar
  152. Rousou A.J., Ericsson M., Federman M., Levitsky S., McCully J.D. 2004. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am. J. Physiol. 287:H1967–H1976Google Scholar
  153. Ryer E.J., Sakakibara K., Wang C., Sarkar D., Fisher P.B., Faries P.L., Kent K.C., Liu B. 2005. Protein kinase C delta induces apoptosis of vascular smooth muscle cells through induction of the tumor suppressor p53 by both p38 dependent and independent mechanisms. J. Biol. Chem. 280:35310–35317PubMedGoogle Scholar
  154. Salinas M., Duprat F., Heurteaux C., Hugnot J.-P., Lazdunski M. 1997. New modulatory a subunits for mammalian Shab K+ channels. J. Biol. Chem. 272:24371–24379PubMedGoogle Scholar
  155. Sano Y., Mochizuki S., Miyake A., Kitada C., Inamura K., Yokoi H., Nozawa K., Matsushime H., Furuichi K. 2002. Molecular cloning and characterization of Kv6.3, a novel modulatory subunit for voltage-gated K+ channel Kv2.1. FEBS Lett. 512:230–234PubMedGoogle Scholar
  156. Sasaki N., Sato T., Ohler A., O’Rourke B., Marbán E. 2000. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 101:439–445PubMedGoogle Scholar
  157. Schrantz N., Blanchard D.A., Auffredou M.T., Sharma S., Leca G., Vazquez A. 1999. Role of caspases and possible involvement of retinoblastoma protein during TGFb-mediated apoptosis of human B lymphocytes. Oncogene 18:3511–3519PubMedGoogle Scholar
  158. Sewing S., Roeper J., Pongs O. 1996. Kvβ1 subunit binding specific for Shaker-related potassium channel a subunits. Neuron 16:455–463PubMedGoogle Scholar
  159. Shi W., Wang H.-S., Pan Z., Wymore R.S., Cohen I.S., McKinnon D., Dixon J.E. 1998. Cloning of a mammalian elk potassium channel gene and EAG mRNA distribution in rat sympathetic ganglia. J. Physiol. 511:675–682PubMedGoogle Scholar
  160. Shimizu S., Eguchi Y., Kamiike W., Funahashi Y., Mignon A., Lacronique V., Matsuda H., Tsujimoto Y. 1998. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc. Natl. Acad. Sci. USA 95:1455–1459PubMedGoogle Scholar
  161. Shimizu S., Ide T., Yanagida T., Tsujimoto Y. 2000a. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275:12321–12325Google Scholar
  162. Shimizu S., Konishi A., Kodama T., Tsujimoto Y. 2000b. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA 97:3100–3105Google Scholar
  163. Siemen D., Loupatatzis C., Borecky J., Gulbins E., Lang F. 1999. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem. Biophys. Res. Commun. 257:549–554PubMedGoogle Scholar
  164. Soh H., Park C.-S. 2001. Inwardly rectifying current-voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biochem. J. 80:2207–2215Google Scholar
  165. Stocker M. 2004. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5:758–770PubMedGoogle Scholar
  166. Storey N.M., Gómez-Angelats M., Bortner C.D., Armstrong D.L., Cidlowski J.A. 2003. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J. Biol. Chem. 278:33319–33326PubMedGoogle Scholar
  167. Szabò I., Gulbins E., Apfel H., Zhang X., Barth P., Busch A.E., Schlottmann K., Pongs O., Lang F. 1996. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J. Biol. Chem. 271:20465–20469PubMedGoogle Scholar
  168. Thompson G.J., Langlais C., Cain K., Conley E.C., Cohen G.M. 2001. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem. J. 357:137–145PubMedGoogle Scholar
  169. Toro L., Wallner M., Meera P., Tanaka Y. 1998. Maxi-KCa, a unique member of the voltage-gated K channel superfamily. News Physiol. Sci. 13:112–117PubMedGoogle Scholar
  170. Trimarchi J.R., Liu L., Smith P.J., Keefe D.L. 2002. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. 282:C588–C594Google Scholar
  171. Tseng-Crank J., Godinot N., Johansen T.E., Ahring P.K., Strøbæk D., Mertz R., Foster C.D., Olesen S.-P., Reinhart P.H. 1996. Cloning, expression, and distribution of a Ca2+-activated K+ channel β-subunit from human brain. Proc. Natl. Acad. Sci. USA 93:9200–9205PubMedGoogle Scholar
  172. Vander Heiden M.G., Chandel N.S., Williamson E.K., Schumacker P.T., Thompson C.B. 1997. Bcl-XL prevents cell death following growth factor withdrawal by facilitating mtochondrial ATP/ADP exchange. Cell 91:627–637PubMedGoogle Scholar
  173. Vega-Saenz de Miera E.C. 2004. Modification of Kv2.1 K+ currents by the silent Kv10 subunits. Mol. Brain Res. 123:91–103PubMedGoogle Scholar
  174. Vu C.C.Q., Bortner C.D., Cidlowski J.A. 2001. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J. Biol. Chem. 276:37602–37611PubMedGoogle Scholar
  175. Wang H.-W., Zhang Y., Cao L., Han H., Wang J., Yang B., Nattel S., Wang Z. 2002. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res. 62:4843–4848PubMedGoogle Scholar
  176. Wang J., Morishima S., Okada Y. 2003. IK channels are involved in the regulatory volume decrease in human epithelial cells. Am. J. Physiol. 284:C77–C84Google Scholar
  177. Wang J., Zhou Y., Wen H., Levitan I.B. 1999a. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J. Neurosci. 19:1–7Google Scholar
  178. Wang L., Xu D., Dai W., Lu L. 1999b. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J. Biol. Chem. 274:3678–3685Google Scholar
  179. Wang X., Xiao Y., Ichinose T., Yu S.P. 2000. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 295:524–530PubMedGoogle Scholar
  180. Wang X.Q., Yu S.P. 2002. Tyrosine phosphorylation regulates activity of Na+, K+-ATPase in cortical neurons. Soc. Neurosci. Abstracts 446.8 Google Scholar
  181. Wesselborg S., Kabelitz D. 1993. Activation-driven death of human T cell clones: time course kinetics of the induction of cell shrinkage, DNA fragmentation, and cell death. Cell Immunol. 148:234–241PubMedGoogle Scholar
  182. Wible B.A., Wang L., Kuryshev Y.A., Basu A., Haldar S., Brown A.M. 2003. Increased K+ efflux and apoptosis induced by the potassium channel modulatory protein KChAP/PIAS3b in prostate cancer cells. J. Biol. Chem. 277:17852–17862Google Scholar
  183. Wolf C.M., Reynolds J.E., Morana S.J., Eastman A. 1997. The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp. Cell. Res. 230:22–27PubMedGoogle Scholar
  184. Xi Q., Cheranov S.Y., Jaggar J.H. 2005. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ. Res. 97:354–362PubMedGoogle Scholar
  185. Xia X.-M., Ding J.P., Lingle C.J. 2003. Inactivation of BK channels by b2 the auxiliary subunit: An essential role of a terminal peptide segment of three hydrophobic residues. J. Gen. Physiol. 121:125–148PubMedGoogle Scholar
  186. Xia X.-M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395:503–507PubMedGoogle Scholar
  187. Xiao A.Y., Wei L., Xia S., Rothman S., Yu S.-P. 2002. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J. Neurosci. 22:1350–1362PubMedGoogle Scholar
  188. Xu W., Liu Y., Wang S., McDonald T., Van Eyk J.E., Sidor A., O’Rourke B. 2002. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033PubMedGoogle Scholar
  189. Yang J., Jan Y.N., Jan L.Y. 1995. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14:1047–1054PubMedGoogle Scholar
  190. Yang J., Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.-I., Jones D.P., Wang X. 1997. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132PubMedGoogle Scholar
  191. Yao Z., Tong J., Tan X., Li C., Shao Z., Kim W.C., Vanden Hoek T.L., Becker L.B., Head C.A., Schumacker P.T. 1999. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am. J. Physiol. 277:H2504–H2509PubMedGoogle Scholar
  192. Yu S.P., Yeh C.-H., Gottron F., Wang X., Grabb M.C., Choi D.W. 1999. Role of the outwardly delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J. Neurochem. 73:933–941PubMedGoogle Scholar
  193. Yu S.P., Yeh C.-H., Sensi S.L., Gwag B.J., Canzoniero L.M., Farhangrazi Z.S., Ying H.S., Tian M., Dugan L.L., Choi D.W. 1997. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117PubMedGoogle Scholar
  194. Yu W., Xu J., Li M. 1996. NAB domain is essential for the subunit assembly of both a-a and a-b complexes of Shaker-like potassium channels. Neuron 16:441–453PubMedGoogle Scholar
  195. Yuan J., Yankner B.A. 2000. Apoptosis in the nervous system. Nature 407:802–809PubMedGoogle Scholar
  196. Yuan X.-J., Tod M.L., Rubin L.J., Blaustein M.P. 1995. Inhibition of cytochrome P-450 reduces voltage-gated K+ currents in pulmonary arterial myocytes. Am. J. Physiol. 268:C259–C270PubMedGoogle Scholar
  197. Zagotta W.N., Hoshi T., Aldrich R.W. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250:568–571PubMedGoogle Scholar
  198. Zhang H.Y., McPherson B.C., Liu H., Baman T.S., Rock P., Yao Z. 2002. H2O2 opens mitochondrial KATP channels and inhibits GABA receptors via protein kinase C-e in cardiomyocytes. Am. J. Physiol. 282:H1395–H1403Google Scholar
  199. Zhao B., Rassendren F., Kaang B.K., Furukawa Y., Kubo T., Kandel E.R. 1994. A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron 13:1205–1213PubMedGoogle Scholar
  200. Zhu H.i.-F., Dong J.-W., Zhu W.-Z., Ding H.-L., Zhou Z.-N. 2003. ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci. 73:1275–1287PubMedGoogle Scholar
  201. Zhu X.-R., Netzer R., Bohlke K., Liu Q., Pongs O. 1999. Structural and functional characterization of Kv6.2, a new g-subunit of voltage-gated potassium channel. Receptors Channels 6:337–350PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations