Advertisement

The Journal of Membrane Biology

, Volume 209, Issue 1, pp 21–29 | Cite as

Volume-sensitive Chloride Channels Involved in Apoptotic Volume Decrease and Cell Death

  • Y. OkadaEmail author
  • T. Shimizu
  • E. Maeno
  • S. Tanabe
  • X. Wang
  • N. Takahashi
Article

Abstract

Apoptosis is an essential process in organ development, tissue homeostasis, somatic cell turnover, and the pathogenesis of degenerative diseases. Apoptotic cell death occurs in response to a variety of stimuli in physiological and pathological circumstances. Efflux of K+ and Cl leads to apoptotic volume decrease (AVD) of the cell. Both mitochondrion-mediated intrinsic, and death receptor-mediated extrinsic, apoptotic stimuli have been reported to rapidly activate Cl conductances in a large variety of cell types. In epithelial cells and cardiomyocytes, the AVD-inducing anion channel was recently determined to be the volume-sensitive outwardly rectifying (VSOR) Cl channel which is usually activated by swelling under non-apoptotic conditions. Blocking the VSOR Cl channel prevented cell death in not only epithelial and cardiac cells, but also other cell types, by inhibiting the induction of AVD and subsequent apoptotic events. Ischemia-reperfusion-induced apoptotic death in cardiomyocytes and brain neurons was also prevented by Cl channel blockers. Furthermore, cancer cell apoptosis induced by the anti-cancer drug cisplatin was recently found to be associated with augmented activity of the VSOR Cl channel and to be inhibited by a Cl channel blocker. The apoptosis-inducing VSOR Cl channel is distinct from ClC-3 and its molecular identity remains to be determined.

Keywords

Anion channel VSOR Cl channel Apoptotic volume decrease Apoptosis Ischemia-reperfusion injury Anti-cancer drug 

Notes

Acknowledgements

The authors are grateful to E.L. Lee for reading the manuscript, to M. Ohara for technical assistance, and to T. Okayasu for secretarial assistance. This work was supported by a Grant-in-Aid for Scientific Research from MEXT of Japan and by a grant from the Salt Science Foundation.

References

  1. Araki T., Hayashi M., Watanabe N., Kanuka H., Yoshino J., Miura M., Saruta T. 2002. Down-regulation of Mcl-1 by inhibition of the PI3-K/Akt pathway is required for cell shrinkage-dependent cell death. Biochem. Biophys. Res. Commun. 290:1275–1281CrossRefPubMedGoogle Scholar
  2. Arreola J., Begenisich T., Nehrke K., Nguyen H.V., Park K., Richardson L., Yang B., Schutte B.C., Lamb F.S., Melvin J.E. 2002. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl channel gene. J. Physiol. 545:207–216CrossRefPubMedGoogle Scholar
  3. Barriere H., Poujeol C., Tauc M., Blasi J.M., Counillon L., Poujeol P. 2001. CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am. J. Physiol. 281:C810–C824Google Scholar
  4. Bortner C.D., Cidlowski J.A. 1996. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol. 271:C950–C961PubMedGoogle Scholar
  5. Bortner C.D., Cidlowski J.A. 2002. Cellular mechanisms for the repression of apoptosis. Annu. Rev. Pharmacol. Toxicol. 42:259–281CrossRefPubMedGoogle Scholar
  6. Bortner C.D., Cidlowski J.A. 2003. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J. Biol. Chem. 278:39176–39184CrossRefPubMedGoogle Scholar
  7. Browe D.M., Baumgarten C.M. 2004. Angiotensin II (AT1) receptors and NADPH oxidase regulate Cl current elicited by beta1 integrin stretch in rabbit ventricular myocytes. J. Gen. Physiol. 124:273–287CrossRefPubMedGoogle Scholar
  8. Buettner R., Papoutsoglou G., Scemes E., Spray D.C., Dermietzel R. 2000. Evidence for secretory pathway localization of a voltage-dependent anion channel isoform. Proc. Natl. Acad. Sci. USA 97:3201–3206CrossRefPubMedGoogle Scholar
  9. Cannon C.L., Basavappa S., Strange K. 1998. Intracellular ionic strength regulates the volume sensitivity of a swelling-activated anion channel. Am. J. Physiol. 275:C416–C422PubMedGoogle Scholar
  10. Cannon C.L., Kowalski M.P., Stopak K.S., Pier G.B. 2003. Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am. J. Respir. Cell Mol. Biol. 29:188–197CrossRefPubMedGoogle Scholar
  11. Coca-Prados M., Anguita J., Chalfant M.L., Civan M.M. 1995. PKC-sensitive Cl- channels associated with ciliary epithelial homologue of pICln. Am. J. Physiol. 268:C572–C579PubMedGoogle Scholar
  12. d’Anglemont de Tassigny A., Souktani R., Henry P., Ghaleh B., Berdeaux A. 2004. Volume-sensitive chloride channels (ICl,vol) mediate doxorubicin-induced apoptosis through apoptotic volume decrease in cardiomyocytes. Fundam. Clin. Pharmacol. 18:531–538CrossRefPubMedGoogle Scholar
  13. Dermietzel R., Hwang T.K., Buettner R., Hofer A., Dotzler E., Kremer M., Deutzmann R., Thinnes F.P., Fishman G.I., Spray D.C., Siemen D. 1994. Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes. Proc. Natl. Acad. Sci. USA 91:499–503PubMedGoogle Scholar
  14. Dong Z., Wang J., Zhong Q. 2003. Postmitochondrial regulation of apoptosis by bicarbonate. Exp. Cell Res. 288:301–312CrossRefPubMedGoogle Scholar
  15. Duan D., Winter C., Cowley S., Hume J.R., Horowitz B. 1997. Molecular identification of a volume-regulated chloride channel. Nature 390:417–421CrossRefPubMedGoogle Scholar
  16. Dupéré-Minier G., Hamelin C., Desharnais P., Bernier J. 2004. Apoptotic volume decrease, pH acidification and chloride channel activation during apoptosis requires CD45 expression in HPB-ALL T cells. Apoptosis 9:543–551CrossRefPubMedGoogle Scholar
  17. Dutta A.K., Sabirov R.Z., Uramoto H., Okada Y. 2004. Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischemic or hypoxic conditions. J. Physiol. 559:799–812PubMedGoogle Scholar
  18. Eggermont J. 2004. Calcium-activated chloride channels: (un)known, (un)loved? Proc. Am. Thorac. Soc. 1:22–27CrossRefGoogle Scholar
  19. Elble R.C., Pauli B.U. 2001. Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J. Biol. Chem. 276:40510–40517CrossRefPubMedGoogle Scholar
  20. Elinder F., Akanda N., Tofighi R., Shimizu S., Tsujimoto Y., Orrenius S., Ceccatelli S. 2005. Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ. 12:1134–1140CrossRefPubMedGoogle Scholar
  21. Fan H.-T., Morishima S., Kida H., Okada Y. 2001. Phloretin differentially inhibits volume-sensitive and cAMP-activated, but not Ca-activated, Cl channels. Br. J. Pharmacol. 133:1096–1106CrossRefPubMedGoogle Scholar
  22. Fujita H., Ishizaki Y., Yanagisawa A., Morita I., Murota S.I., Ishikawa K. 1999. Possible involvement of a chloride-bicarbonate exchanger in apoptosis of endothelial cells and cardiomyocytes. Cell Biol. Int. 23:241–249CrossRefPubMedGoogle Scholar
  23. Fujita H., Yanagisawa A., Ishikawa K. 1997. Suppressive effect of a chloride bicarbonate exchanger inhibitor on staurosporine-induced apoptosis of endothelial cells. Heart Vessels (Suppl.) 12:84–88CrossRefGoogle Scholar
  24. Gong W., Xu H., Shimizu T., Morishima S., Tanabe S., Tachibe T., Uchida S., Sasaki S., Okada Y. 2004. ClC-3-independent, PKC-dependent activity of volume-sensitive Cl channel in mouse ventricular cardiomyocytes. Cell. Physiol. Biochem. 14:213–224CrossRefPubMedGoogle Scholar
  25. Gottlieb R.A., Dosanjh A. 1996. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc. Natl. Acad. Sci. USA 93:3587–3591CrossRefPubMedGoogle Scholar
  26. Gulbins E., Jekle A., Ferlinz K., Grassme H., Lang F. 2000. Physiology of apoptosis. Am. J. Physiol. 279:F605–F615Google Scholar
  27. Hortelano S., Zeini M., Castrillo A., Alvarez A.M., Bosca L. 2002. Induction of apoptosis by nitric oxide in macrophages is independent of apoptotic volume decrease. Cell Death Differ. 9:643–650CrossRefPubMedGoogle Scholar
  28. Inoue H., Ohtaki H., Shioda S., Okada Y. 2005. Chloride channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. Jpn. J. Physiol. 55:S149CrossRefGoogle Scholar
  29. Ise T., Shimizu T., Lee E.L., Inoue H., Kohno K., Okada Y. 2006. Roles of volume-sensitive Cl channel in cisplatin-induced apoptosis in human epidermoid cancer cells. J. Membrane Biol. 205:139–145CrossRefGoogle Scholar
  30. Jackson P.S., Morrison R., Strange K. 1994. The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am. J. Physiol. 267:C1203–C1209PubMedGoogle Scholar
  31. Jackson P.S., Churchwell K., Ballatori N., Boyer J.L., Strange K. 1996. Swelling-activated anion conductance in skate hepatocytes: regulation by cell Cl and ATP. Am. J. Physiol. 270:C57–C66PubMedGoogle Scholar
  32. Kim J.A., Kang Y.S., Lee Y.S. 2003. Role of Ca2+-activated Cl channels in the mechanism of apoptosis induced by cyclosporin A in a human hepatoma cell line. Biochem. Biophys. Res. Commun. 309:291–297CrossRefPubMedGoogle Scholar
  33. Lepple-Wienhues A., Szabo I., Laun T., Kaba N.K., Gulbins E., Lang. F. 1998. The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J. Cell Biol. 141:281–286CrossRefPubMedGoogle Scholar
  34. Liu Y., Oiki S., Tsumura T., Shimizu T., Okada Y. 1998. Glibenclamide blocks volume-sensitive Cl channels by dual mechanisms. Am. J. Physiol. 275:C343–C351PubMedGoogle Scholar
  35. Maeno E., Ishizaki Y., Kanaseki T., Hazama A., Okada Y. 2000. Normotonic cell shrinkage due to disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97:9487–9492CrossRefPubMedGoogle Scholar
  36. Meng X.J., Carruth M.W., Weinman S.A. 1997. Leukotriene D4 activates a chloride conductance in hepatocytes from lipopolysaccharide-treated rats. J. Clin. Invest. 99:2915–2922PubMedCrossRefGoogle Scholar
  37. Meyer K., Korbmacher C. 1996. Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells. J. Gen. Physiol. 108:177–193CrossRefPubMedGoogle Scholar
  38. Myssina S, Lang P.A., Kempe D.S., Kaiser S., Huber S.M., Wieder T., Lang F. 2004. Cl channel blockers NPPB and niflumic acid blunt Ca2+-induced erythrocyte ‘apoptosis’. Cell. Physiol. Biochem. 14:241–248CrossRefPubMedGoogle Scholar
  39. Nietsch H.H., Roe M.W., Fiekers J.F. Moore A.L., Lidofsky S.D. 2000. Activation of potassium and chloride channels by tumor necrosis factor α. Role in liver cell death. J. Biol. Chem. 275:20556–20561CrossRefPubMedGoogle Scholar
  40. Nilius B, Eggermont J., Voets T., Buyse G., Manolopoulos V., Droogmans G. 1997. Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68:69–119CrossRefPubMedGoogle Scholar
  41. Oiki S., Kubo M., Okada Y. 1994. Mg2+ and ATP-dependence of volume-sensitive Cl− channels in human epithelial cells. Jpn. J. Physiol. 44 (Suppl. 2):S77–S79PubMedGoogle Scholar
  42. Okada Y. 1997. Volume expansion-sensing outward rectifier Cl channel: A fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273:C755–C789PubMedGoogle Scholar
  43. Okada Y. 2004. Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem. Biophys. 41:233–258CrossRefPubMedGoogle Scholar
  44. Okada Y., Maeno E. 2001. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp. Biochem. Physiol. Part A. 130:377–383CrossRefGoogle Scholar
  45. Okada Y., Maeno E., Shimizu T., Dezaki K., Wang J., Morishima S. 2001. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J. Physiol. 532:3–16CrossRefPubMedGoogle Scholar
  46. Okada Y., Maeno E., Shimizu T., Manabe K., Mori S., Nabekura T. 2004. Dual roles of plasmalemmal chloride channels in induction of cell death. Pfluegers Arch. Eur. J. Physiol. 448:287–295CrossRefGoogle Scholar
  47. O’Reilly N., Xia Z., Fiander H., Tauskela J., Small DL. 2002. Disparity between ionic mediators of volume regulation and apoptosis in N1E 115 mouse neuroblastoma cells. Brain Res. 943:245–256CrossRefPubMedGoogle Scholar
  48. Porcelli A.M., Ghelli A., Zanna C., Valente P., Ferroni S., Rugolo M.. 2003. Staurosporine induces apoptotic volume decrease (AVD) in ECV304 cells. Ann. N. Y. Acad. Sci. 1010:342–346CrossRefPubMedGoogle Scholar
  49. Porcelli A.M., Ghelli A., Zanna C., Valente P., Ferroni S., Rugolo M. 2004. Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl conductance. Cell Death Differ. 11:655–662PubMedGoogle Scholar
  50. Rasola A., Farahi Far D., Hofman P., Rossi B. 1999. Lack of internucleosomal DNA fragmentation is related to Cl efflux impairment in hematopoietic cell apoptosis. FASEB J. 13:1711–1723PubMedGoogle Scholar
  51. Sabirov, R.Z., Sheiko, T., Liu, H., Deng, D., Okada, Y., Craigen, W.J. 2006. Genetic demonstration that the plasma membrane maxi-anion channel and voltage-dependent anion channels (VDACS) are unrelated proteins. J. Biol. Chem. 281:1897–1904CrossRefPubMedGoogle Scholar
  52. Schumann M.A., Gardner P., Raffin T.A. 1993. Recombinant human tumor necrosis factor alpha induces calcium oscillation and calcium-activated chloride current in human neutrophils. The role of calcium/calmodulin-dependent protein kinase. J. Biol. Chem. 268:2134–2140PubMedGoogle Scholar
  53. Shen M.R., Droogmans G., Eggermont J., Voets T., Ellory J.C., Nilius B. 2000. Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J. Physiol. 529:385–394CrossRefPubMedGoogle Scholar
  54. Shimizu T., Numata T., Okada Y. 2004. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl channel. Proc. Natl. Acad. Sci. USA 101:6770–6773CrossRefPubMedGoogle Scholar
  55. Small D.L., Tauskela J., Xia Z. 2002. Role for chloride but not potassium channels in apoptosis in primary rat cortical cultures. Neurosci. Lett. 334:95–98CrossRefPubMedGoogle Scholar
  56. Souktani R., Berdeaux A., Ghaleh B., Giudicelli J.F., Guize L., Le Heuzey J.Y., Henry P. 2000. Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes. Am. J. Physiol. 279:C158–C165Google Scholar
  57. Steinacker P., Awni L.A., Becker S., Cole T., Reymann S., Hesse D., Kratzin H.D., Morris-Wortmann C., Schwarzer C., Thinnes F.P., Hilschmann N. 2000. The plasma membrane of Xenopus laevis oocytes contains voltage-dependent anion-selective porin channels. Int. J. Biochem. Cell Biol. 32:225–234CrossRefPubMedGoogle Scholar
  58. Stobrawa S.M., Breiderhoff T., Takamori S., Engel D., Schweizer M., Zdebik A.A., Bosl M.R., Ruether K., Jahn H., Draguhn A., Jahn R., Jentsch T.J. 2001. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29:185–196CrossRefPubMedGoogle Scholar
  59. Strange K., Emma F., Jackson P.S. 1996. Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270:C711–C730PubMedGoogle Scholar
  60. Szabo I., Lepple-Wienhues A., Kaba K.N., Zoratti M., Gulbins E., Lang F. 1998. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc. Natl. Acad. Sci. USA 95:6169–6174CrossRefPubMedGoogle Scholar
  61. Takahashi N., Wang X.-M., Tanabe S., Uramoto H., Jishage K., Uchida S., Sasaki S., Okada Y. 2005. ClC-3-independent sensitivity of apoptosis to Cl channel blockers in mouse cardiomyocytes. Cell. Physiol. Biochem. 15:263–270CrossRefPubMedGoogle Scholar
  62. Tanabe S., Wang X.-M., Takahashi N., Uramoto H., Okada Y. 2005. HCO3-independent rescue from apoptosis by stilbene derivatives in rat cardiomyocytes. FEBS Lett. 579:517–522CrossRefPubMedGoogle Scholar
  63. Ullrich S., Berchtold S., Boehmer C., Fillon S., Jendrossek V., Palmada M., Schroeder T.H., Pier G.B., Lang F. 2003. Pseudomonas aeruginosa activates Cl channels in host epithelial cells. Pflügers Arch. Eur. J. Physiol. 447:23–28CrossRefGoogle Scholar
  64. Varela D., Simon F., Riveros A., Jorgensen F., Stutzin A. 2004. NAD(P)H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation. J. Biol. Chem. 279:13301–1334CrossRefPubMedGoogle Scholar
  65. Wang X., Takahashi N., Uramoto H., Okada Y. 2005. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes. Cell. Physiol. Biochem. 16:147–154CrossRefPubMedGoogle Scholar
  66. Wei L., Xiao A.Y., Jin C., Yang A., Lu Z.Y., Yu S.P. 2004. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pfluegers Arch. Eur. J. Physiol. 448:325–334CrossRefGoogle Scholar
  67. Wondergem R., Gong W., Monen S.H., Dooley S.N., Gonce J.L., Conner T.D., Houser M., Ecay T.W., Ferslew K.E. 2001. Blocking swelling-activated chloride current inhibits mouse liver cell proliferation. J. Physiol. 532:661–672CrossRefPubMedGoogle Scholar
  68. Zamaraeva M.V., Sabirov R.Z., Maeno E., Ando-Akatsuka Y., Bessonova S.V., Okada Y. 2005. Cells die with increased cytosolic ATP during apoptosis: A bioluminescence study with intracellular luciferase. Cell Death Differ. 12:1390–1397CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Y. Okada
    • 1
    Email author
  • T. Shimizu
    • 1
  • E. Maeno
    • 1
  • S. Tanabe
    • 1
  • X. Wang
    • 1
  • N. Takahashi
    • 1
  1. 1.Department of Cell PhysiologyNational Institute for Physiological SciencesJapan

Personalised recommendations