Skip to main content
Log in

Asymmetry in the Osmotic Response of a Rat Cortical Collecting Duct Cell Line: Role of Aquaporin-2

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Transition from antidiuresis to diuresis exposes cortical collecting duct cells (CCD) to asymmetrical changes in environment osmolality, inducing an osmotic stress, which activates numerous membrane-associated events. The aim of the present work was to investigate, either in the presence or not of AQP2, the transepithelial osmotic water permeability (Posm) following cell exposure to asymmetrical hyper- or hypotonic gradients. For this purpose, transepithelial net volume fluxes were recorded every minute in two CCD cell lines: one not expressing AQPs (WT-RCCD1) and another stably transfected with AQP2 (AQP2-RCCD1). Our results demonstrated that the rate of osmosis produced by a given hypotonic shock depends on the gradient direction (osmotic rectification) only in the presence of apical AQP2. In contrast, hypertonic shocks elicit Posm rectification independently of AQP2 expression, and this phenomenon may be linked to modulation of basolateral membrane permeability. No asymmetry in transepithelial resistance was observed under hypo- or hypertonicity, indicating that rectification cannot be attributed to a shunt through the tight junction path. We conclude that osmotic rectification may be explained in terms of dynamical changes in membrane permeability probably due to activation/incorporation of AQPs or transporters to the plasma membrane via some mechanism triggered by osmolality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agre P., Kozono D. 2003. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:71–78

    Article  Google Scholar 

  2. Blot-Chabaud M., Laplace M., Cluzeaud F., Capurro C., Cassingena C., Vandewalle A., Farman N., Bonvalet J.P. 1996. Characteristics of a rat cortical collecting duct cell line that maintains high transepithelial resistance. Kidney Intern. 50:367–376

    CAS  Google Scholar 

  3. Brown D. 2003. The ins and outs of aquaporin-2 trafficking. Am. J. Physiolo. 284:F893–F901

    CAS  Google Scholar 

  4. Burg M., Helman S., Grantham J., Orloff J. 1969. Effect of vasopressin on the permeability of isolated rabbit cortical collecting tubules to urea, acetamide and thiourea. Excerpta. Med. Sect II 20:163–169

    Google Scholar 

  5. Candia O.A., Mia A., Yorio T. 1997. Evidence of basolateral water permeability regulation in amphibian urinary bladder. Biol. Cell. 89:331–339

    Article  CAS  PubMed  Google Scholar 

  6. Candia O.A., Patarca R., Alvarez L.J. 1998. Reduction of water permeability by anisotonic solutions in frog corneal epithelium. Invest. Ophthalmol. Vis. Sci. 39:378–384

    CAS  PubMed  Google Scholar 

  7. Capurro C., Rivarola V., Kierbel A., Farman N., Blot-Chabaud M., Parisi M. 2001. Vasopressin regulates water flow in a rat cortical collecting duct cell line not containing known aquaporins. J. Membrane Biol. 149:63–70

    Google Scholar 

  8. Dainty J. 1963. The polar permeability of plant cell membranes to water. Protoplasma 57:220–228

    Article  CAS  Google Scholar 

  9. Deen P.M., Verdijk M.A., Knoers N.V., Wieringa B., Monnens L.A., van Os C.H., van Oost B. 1994. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    CAS  PubMed  Google Scholar 

  10. DiBona D.R. 1983. Cytoplasmic involvement in ADH-mediated osmosis across toad urinary bladder. Am. J. Physiol. 245:C297–C307

    CAS  PubMed  Google Scholar 

  11. Djelidi S., Fay M., Cluzeaud F., Escoubet B., Eugene E., Capurro C., Bonvalet J.P., Farman N., Blot-Chabaud M. 1997. Transcriptional regulation of sodium transport by vasopressin in renal cells. J. Biol. Chem. 272:32918–32924

    Article  Google Scholar 

  12. Djelidi S., Fay M., Cluzeaud F., Thomas-Soumarmon A., Bonvalet J.P., Farman N., Blot-Chabaud M. 1999. Vasopressin stimulates long-term net chloride secretion in cortical collecting duct cells. FEBS. Lett. 400:533–538

    Google Scholar 

  13. Dorr R.A., Kierbel A., Vera J., Parisi M. 1997. A new data-acquisition system for the measurement of the net volume flux across epithelia. Computer Methods and Programs in Biomedicine 53:9–14

    Article  CAS  PubMed  Google Scholar 

  14. Finkelstein A. 1987. Water movement through lipid bilayers, pores and plasma membranes. John Wiley & Sons, USA

    Google Scholar 

  15. Fischbarg J. 1997. Mechanism of fluid transport across corneal endothelium and other epithelial layers: a possible explanation based on cyclic cell volume regulatory changes. Br. J. Ophthalmol. 81:85–89

    CAS  PubMed  Google Scholar 

  16. Fischbarg J., Warshavsky C.R., Lim J.J. 1977. Pathways for hydraulically and osmotically-induced water flows across epithelia. Nature 266:71–74

    Article  CAS  PubMed  Google Scholar 

  17. Ford, P., Rivarola, V., Chara, O., Blot-Chabaud, M., Cluzeaud, F., Farman, N., Parisi, M., Capurro, C. 2005. Volume regulation in cortical collecting duct cells: role of AQP2. Biol. Cell. Epubdoi:10.1042/BC20040116

  18. Ford P., Rivarola V., Kierbel A., Chara O., Blot-Chabaud M., Farman N., Parisi M., Capurro C. 2002. Differential role of Na+/H+ exchange isoforms NHE-1 and NHE-2 in a rat cortical collecting duct cell line. J. Membrane. Biol. 190:117–125

    Article  CAS  Google Scholar 

  19. Gratham J.J., Orloff J. 1968. Effect of prostaglandin E 1 on the permeability response of the isolated collecting tubule to vasopresin, adenosine 3′,5′-monophosphate and theophyline. J. Clin. Invest. 47:1154–1161

    Google Scholar 

  20. Harris H.W. Jr., Botelho B. Zeidel M.L., Strange K. 1992. Cytoplasmic dilution induces antidiuretic hormone water channel retrieval in toad urinary bladder. Am. J. Physiol. 263:F163–F170

    CAS  PubMed  Google Scholar 

  21. Kedem O., Katchalsky A. 1963. Permeability of composite membranes. Part III. Series array of elements. Trans. Faraday Soc. 59:1941–1953

    Google Scholar 

  22. Kirk D.L., DiBona D.R., Schafer J.A. 1984. Morphologic response of the rabbit cortical collecting tubule to peritubular hypotonicity: quantitative examination with differential interference contrast microscopy. J. Membrane Biol. 79:53–64

    CAS  Google Scholar 

  23. Kirk D.L., Schafer J.A., DiBona D.R. 1984. Quantitative analysis of the structural events associated with antidiuretic hormone-induced volume reabsorption in the rabbit cortical collecting tubule. J. Membrane Biol. 79:65–74

    CAS  Google Scholar 

  24. Kuwahara M., Shi L.B., Marumo F., Verkman A.S. 1991. Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule. J. Clin. Invest. 88:423–429

    CAS  PubMed  Google Scholar 

  25. Loeschke K., Bentzel C.J., Csaky T.Z. 1970. Asymmetry of osmotic flow in frog intestine: functional and structural correlation. Am. J. Physiol. 218:1723–1731

    CAS  PubMed  Google Scholar 

  26. Maric K., Wiesner B., Lorenz D., Klussmann E., Betz T., Rosenthal W. 2001. Cell volume kinetics of adherent epithelial cells measured by laser scanning reflection microscopy: determination of water permeability changes of renal principal cells. Biophys. J. 80:1783–1790

    CAS  PubMed  Google Scholar 

  27. Moshelion M., Moran N., Chaumont F. 2004. Dynamic changes in the osmotic water permeability of protoplast plasma membrane. Plant Physiol. 135:2301–2317

    Article  CAS  PubMed  Google Scholar 

  28. Nadler S.P. 1990. Effects of hypertonicity on ADH-stimulated water permeability in rat inner medullary collecting duct. Am. J. Physiol. 258:F266–F272

    CAS  PubMed  Google Scholar 

  29. Nielsen S., Frokiaer J., Marples D., Kwon T.H., Agre P., Knepper M.A. 2002. Aquaporins in the kidney: from molecules to medicine. Physiol. Rev. 28:205–244

    Google Scholar 

  30. Ozu M., Toriano R., Capurro C., Parisi M. 2005. Electrical parameters and water permeability properties of monolayers formed by T84 cells cultured on permeable supports. Braz J. Med. Biol. Res. 38:133-140

    Article  CAS  PubMed  Google Scholar 

  31. Parisi M., Bourguet J., Ripoche P., Chevalier J. 1979. Simultaneous minute by minute determination of unidirectional and net water fluxes in frog urinary bladder. A reexamination of the two barriers in series hypothesis, Biochim. Biophys. Acta, 556:509–523

    CAS  PubMed  Google Scholar 

  32. Parisi M., Ibarra C. 1996. Aquaporins and water transfer across epithelial barriers. Braz. J. Med. Res. 29:933–939

    CAS  Google Scholar 

  33. Reid J.M., O’Neil R.G. 2000. Osmomechanical regulation of membrane trafficking in polarized cells. Biochem. Biophys. Res. Commun. 271:429–434

    Article  CAS  PubMed  Google Scholar 

  34. Reif M.C., Troutman S.L., Schafer J.A. 1984. Sustained response to vasopressin in isolated rat cortical collecting tubule. Kidney Int. 26:725–732

    CAS  PubMed  Google Scholar 

  35. Ripoche P., Bourguet J., Parisi M. 1973. The effect of hyper- tonic media on water permeability of frog urinary bladder. J. Gen. Physiol. 61:110–124

    Article  CAS  PubMed  Google Scholar 

  36. Schafer J.A., Patlak C.S., Andreoly I.E. 1974. Osmosis in Cortical Collecting Tubules. A theoretical and experimental analysis of the osmotic transient phenomenon. J. Gen. Physiol. 64:201–227

    CAS  PubMed  Google Scholar 

  37. Schafer J.A., Troutman S.L., Andreoli T.E. 1974. Osmosis in cortical collecting tubules. ADH-independent osmotic flow rectification. J. Gen. Physiol. 64:228–240

    CAS  PubMed  Google Scholar 

  38. Strange K., Spring K.R. 1987. Cell membrane water permeability of rabbit cortical collecting duct. J. Membrane Biol. 96:27–43

    Article  CAS  Google Scholar 

  39. Terashima M., Fujita Y., Sugano K., Asano M., Kagiwada N., Sheng Y., Nakamura S., Hasegawa A., Kakuta T., Saito A. 2001. Evaluation of water and electrolyte transport of tubular epithelial cells under osmotic and hydraulic pressure for development of bioartificial tubules. Artif. Organs 25:209–212

    Article  CAS  PubMed  Google Scholar 

  40. Toriano R., Ford P., Rivarola V., Tamarappoo B.K., Verkman A.S., Parisi M. 1998. Reconstitution of a regulated transepithelial water pathway in cells transfected with AQP2 and an AQP1/AQP2 hybrid containing the AQP2-C terminus. J. Membrane Biol. 61:141–149

    Google Scholar 

  41. Urakabe S., Handler J.S., Orloff J. 1970. Effect of hypertonicity on permeability properties of the toad bladder, Am. J. Physiol. 218:1179–1187

    CAS  Google Scholar 

  42. Valenti G., Frigeri A., Ronco P.M., D’Ettorre C., Svelto M. 1996. Expression and functional analysis of water channels in a stably AQP2-transfected human collecting duct cell line. J. Biol. Chem. 271:24365–24370

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M.A. Rivarola for his helpful assistance. This work was supported by grants from Fondo Nacional para la Ciencia y la Tecnología (FONCYT, Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina); Universidad de Buenos Aires (UBA, Argentina) and Fundación ANTORCHAS (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Capurro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chara, O., Ford, P., Rivarola, V. et al. Asymmetry in the Osmotic Response of a Rat Cortical Collecting Duct Cell Line: Role of Aquaporin-2. J Membrane Biol 207, 143–150 (2005). https://doi.org/10.1007/s00232-005-0809-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0809-9

Keywords

Navigation