Skip to main content
Log in

Conformational Changes of 3,5,3′-Triiodo L-Thyronine Induced by Interactions with Phospholipid: Physiological Speculations

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The conformational changes of 3,5,3′-triiodo L-thyronine induced by interaction with phospholipids were analyzed by Raman spectroscopy. The spectra were interpreted in terms of two conformers of this hormone in equilibrium in the lipid medium, depending on the orientation of the 3′-iodine with respect to the ring α. Theoretical geometry optimizations on both conformers in vacuo and in different solvents, together with the respective calculated energies support the experimental results. The presence of only one iodine atom in the phenolic ring allows assumption of a higher flexibility of 3,5,3′-triiodo L-thyronine and a better accommodation into the lipid medium compared to 3,5,3′,5′-tetraiodo L-thyronine. The possible physiological implications of structural differences that appear in membrane models between 3,5,3′-triiodo L-thyronine and 3,5,3′,5′-tetraiodo L-thyronine are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Álvarez R.M.S., Della Védova C.O., Mack H.G., Farías R.N., Hildebrandt P. 2002. Raman spectroscopic study of the conformational changes of thyroxine induced by interactions with phospholipid. Eur. Biophys J. 31:488–453

    Google Scholar 

  • Álvarez R.M.S., Farías R.N., Hildebrandt P. 2004. A comparative vabrational analysis of thyronine hormones using infrared and Raman spectroscopy and density functional theory calculations. J. Raman Spectrosc. 35:947–955

    Article  Google Scholar 

  • Camerman A., Camerman N. 1974. Thyroid hormone stereochemistry. I. The molecular structures of 3,5,3′-triiodo-L-thyronine (T3) and L-thyroxine (T4). Acta Cryst. B30:1832–1840

    Google Scholar 

  • Chehín R.N., Rintoul M.R., Morero R.D., Farías R.N. 1995. Differential effect of triiodothyronine and thyroxine on liposomes containing cholesterol: Physiological speculations. J. Membrane Biol. 147:217–221

    Google Scholar 

  • Chehin R.N., Isse B.G., Rintoul M.R., Farías R.N. 1999. Differential transmembrane diffusion of triiodothyronine and thyroxine in liposomes: Regulation by lipid composition. J. Membrane Biol. 167:251–256

    Article  Google Scholar 

  • Davis P.J. 1991. Nongenome actions of thyroid hormones. In: L.E. Braverman, R.D. Utiger, eds. The Thyroid: A Fundamental and Clinical Text. Lippincott William & Wilkins, Philadelphia. pp. 190–203

    Google Scholar 

  • Duggan B.M., Craik D.J. 1996. 1H and 13C NMRX relaxation/studies of molecular Dynamics of the thyroid hormones thyroxine, 3,5,3′-triiodothyronine, and 3,5-diiodothyronine. J. Med. Chem. 39:4007–4016

    Article  PubMed  Google Scholar 

  • Farías R.N., Chehín R.N., Rintoul M.R., Morero R.D. 1995. Differential effect of triiodothyronine and thyroxine on the liposomal membrane in liquid-crystalline and gel state. J. Membrane Biol. 143:135–141

    Google Scholar 

  • Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. 2003. Gaussian 03. Revision A.I. Gaussian, Pittsburgh, PA

  • Hillier A.P. 1970. The binding of thyroid hormones to phospholipid membranes. J. Physiol. 199:585–597

    Google Scholar 

  • Hulbert A.J. 2000. Thyroid hormones and their effects: a new perspective. Biol. Rev. 75:519–631

    Article  PubMed  Google Scholar 

  • Incerpi S., Luly P., De Vito P., Farias R.N., 1999. Short-term effects of thyroid hormones on the modulation of the Na/H antiport in L-6 myoblasts: High molecular specificity for L-3,5,3′- triiodothyronine. Endocrinology 140:683–689

    Article  PubMed  Google Scholar 

  • Isse B., Fidelio G., Farias R.N. 2003. Thyroid homones affect membrane dipolar organization. Is it a general event in their non-genomic action? J. Membrane Biol. 191:209–213

    Article  Google Scholar 

  • Korcek L., Tabachnick M., 1976. Thyroxine-protein interactions. Interaction of thyroxine and triiodothyronine with human thyroxine-binding globulin. J. Biol. Chem. 251:3558–3562

    PubMed  Google Scholar 

  • Lai C.-S., Cheng S.-Y. 1982. Rotational and lateral diffusion of L-thyroxine in phospholipids bilayer. Biochim. Biophys. Acta 692:27–32

    Google Scholar 

  • Lai C.-S., Cheng S.-Y. 1984. Molecular dynamics of 3,5,3′-triiodothyronine in model membranes; a spin label study. Arch. Biochem. Biophys. 232:477–481

    Article  PubMed  Google Scholar 

  • Lai G.-S., Koritowsky W., Niu C.-N., Cheng S.-Y. 1985. Transverse motion of spin labeled 3,5,3′-triiodo-L-thyronine in phospholipid bilayers. Biochem. Biophys. Ress. Comm. 131:408–412

    PubMed  Google Scholar 

  • Matysik J., Hildebrandt P., Schlamann W., Braslavsky S.E., Schaffner K. 1995. Fourier-transform resonance Raman spectroscopy of intermediates of the phytochrome photocycle. Biochemistry 34:10497–10507

    Article  PubMed  Google Scholar 

  • Thewalt J.L., Bloom M. 1991. Phosphatidilcholine:cholesterol phase diagrams. Biophys. J. 63:1176–1181

    Google Scholar 

  • Verma S.P., Wallach D.F.H., 1984. Raman spectroscopy of lipids and biomembranes. In: Biomembrane Structure and Function. D. Chapman, Ed., pp 167–198, Verlag Chemie

  • Wong M.W., Wiberg K.B., Frisch M.J. 1991. Hartree-Fock second derivatives and dielectric field properties in a solvent reaction field: Theory and application. J. Chem. Phys. 95:8991–8998

    Article  Google Scholar 

  • Wong M.W., Wiberg K.B., Frisch M.J. 1992. Solvent effects, 2. Medium effect on the structure, energy, change density and vibrational frequencies of sulfamic acid. J. Am. Chem. Soc. 114:523–529

    Article  Google Scholar 

  • Wong M.W., Wiberg K.B., Frisch M.J. 1992. Solvent effects, 3.Tautoineric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab-initio SCRF study. J. Am. Chem. Soc. 114:1645–1652

    Article  Google Scholar 

  • Yen M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81:1097–1142

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT) and DAAD. R.M.S.A., E.H.C. and R.N.F. are career researchers of CONICET. R.M.S.A. thanks Prof. Dr. P. Hildebrandt and the Max-Plank Institut für Strahlenchemie, Mülheim, Germany, for generous support of the experimental part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.N. Farías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, R., Cutin, E. & Farías, R. Conformational Changes of 3,5,3′-Triiodo L-Thyronine Induced by Interactions with Phospholipid: Physiological Speculations. J Membrane Biol 205, 61–69 (2005). https://doi.org/10.1007/s00232-005-0763-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0763-6

Keywords

Navigation