Skip to main content
Log in

Expression and Coexpression of CO2-sensitive Kir Channels in Brainstem Neurons of Rats

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Several inward rectifier K+ (Kir) channels are inhibited by hypercapnic acidosis and may be involved in CO2 central chemoreception. Among them are Kir1.1, Kir2.3, and Kir4.1. The Kir4.1 is expressed predominantly in the brainstem. Although its CO2 sensitivity is low, coexpression of Kir4.1 with Kir5.1 in Xenopus oocytes greatly enhances the CO2/pH sensitivities of the heteromeric channels. If these Kir channels play a part in the central CO2 chemosensitivity, they should be expressed in neurons of brainstem cardio-respiratory nuclei. To test this hypothesis, we performed in-situ hybridization experiments in which the expression of Kir1.1, Kir2.3, Kir4.1 and Kir5.1, and coexpression of Kir4.1 and Kir5.1 were studied in brainstem neurons using non-radioactive riboprobes. We found that mRNAs of these Kir channels were present in several brainstem nuclei, especially those involved in cardio-respiratory controls. Strong labeling was observed in the locus coeruleus, ventralateral medulla, parabrachial-Kölliker-Fuse nuclei, solitary tract nucleus, and area postrema. Strong expression was also seen in several cranial motor nuclei, including the nucleus of ambiguus, hypoglossal nucleus, facial nucleus and dorsal vagus motor nucleus. In general, the expression of Kir5.1 and Kir4.1 was much more prominent than that of Kir1.1 and Kir2.3 in all the nuclei. Evidence for the coexpression of Kir4.1 and Kir5.1 was found in a good number of neurons in these nuclei. The expression and coexpression of these CO2/pH-sensitive Kir channels suggest that they are likely to contribute to CO2 chemosensitivity of the brainstem neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. K. Ballanyi H. Onimaru I. Homma (1999) ArticleTitleRespiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog. Neurobiol. 59 583–634 Occurrence Handle10.1016/S0301-0082(99)00009-X Occurrence Handle1:STN:280:DC%2BD3czgt1ekug%3D%3D Occurrence Handle10845755

    Article  CAS  PubMed  Google Scholar 

  2. T. Baukrowitz S.J. Tucker U. Schulte K. Benndorf J.P. Ruppersberg B. Fakler (1999) ArticleTitleInward rectification in KATP channels: a pH switch in the pore. EMBO J. 18 847–853 Occurrence Handle10.1093/emboj/18.4.847 Occurrence Handle1:CAS:528:DyaK1MXhs1Wrur8%3D Occurrence Handle10022827

    Article  CAS  PubMed  Google Scholar 

  3. C.T. Bond M. Pessia X.M. Xia A. Lagrutta M.P. Kavanaugh J.P. Adelman (1994) ArticleTitleCloning and expression of a family of inward rectifier potassium channels. Receptors Channels 2 183–191 Occurrence Handle1:CAS:528:DyaK2MXitVeitbg%3D Occurrence Handle7874445

    CAS  PubMed  Google Scholar 

  4. D.S. Bredt T.L. Wang N.A. Cohen W.B. Guggino S.H. Snyder (1995) ArticleTitleCloning and expression of two brain-specific inwardly rectifying potassium channels. Proc. Nat. Acad. Sci. USA 92 6753–6757 Occurrence Handle1:CAS:528:DyaK2MXntVSks74%3D Occurrence Handle7624316

    CAS  PubMed  Google Scholar 

  5. M. Casamassima M.C. D’Adamo M. Pessia S.J. Tucker (2003) ArticleTitleIdentification of a heteromeric interaction which influences the rectification, gating and pH-sensitivity of Kir4.1/Kir5.1 potassium channels. J. Biol. Chem. 278 43533–43540 Occurrence Handle10.1074/jbc.M306596200 Occurrence Handle1:CAS:528:DC%2BD3sXosFSrsLs%3D Occurrence Handle12923169

    Article  CAS  PubMed  Google Scholar 

  6. H. Choe H. Zhou L.G. Palmer H. Sackin (1997) ArticleTitleA conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am. J. Physiol. 273 F516–F529 Occurrence Handle1:CAS:528:DyaK2sXnt1Sru7o%3D Occurrence Handle9362329

    CAS  PubMed  Google Scholar 

  7. K.L. Coulter F. Perier C.M. Radeke C.A. Vandenberg (1995) ArticleTitleIdentification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron 15 1157–1168 Occurrence Handle1:CAS:528:DyaK2MXps1GrsL4%3D Occurrence Handle7576658

    CAS  PubMed  Google Scholar 

  8. N. Cui L.R. Giwa H. Xu A. Rojas L. Abdulkadir C. Jiang (2001) ArticleTitleModulation of the heteromeric Kir4.1-Kir5.1 channels by Pco2 at physiological levels. J. Cell Physiol. 189 229–236 Occurrence Handle10.1002/jcp.10021 Occurrence Handle1:CAS:528:DC%2BD3MXnsVelu7w%3D Occurrence Handle11598908

    Article  CAS  PubMed  Google Scholar 

  9. T. Doi B. Fakler J.H. Schultz U. Schulte U. Brandle S. Weidemann H.P. Zenner F. Lang J.P. Ruppersberg (1996) ArticleTitleExtracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels. J. Biol. Chem. 271 17261–17266 Occurrence Handle10.1074/jbc.271.29.17261 Occurrence Handle1:CAS:528:DyaK28XksFamt7o%3D Occurrence Handle8663367

    Article  CAS  PubMed  Google Scholar 

  10. F.M. Faraci C.G. Sobey (1996) ArticleTitlePotassium channels and the cerebral circulation. Clin. Exp. Pharmacol. Physiol. 23 1091–1095 Occurrence Handle1:CAS:528:DyaK2sXkt12ruw%3D%3D Occurrence Handle8977165

    CAS  PubMed  Google Scholar 

  11. B. Hille (1992) Ionic Channels of Excitable Membranes. Sunderland, MA Sinauer Associates. 115–139

    Google Scholar 

  12. K. Ho C.G. Nichols W.J. Lederer J. Lytton P.M. Vassilev M.V. Kanazirska S.C. Hebert (1993) ArticleTitleCloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362 31–38 Occurrence Handle1:CAS:528:DyaK3sXktVegtLg%3D Occurrence Handle7680431

    CAS  PubMed  Google Scholar 

  13. H. Ito J. Vereecke E. Carmeliet (1992) ArticleTitleIntracellular protons inhibit inward rectifier K+ channel of guinea-pig ventricular cell membrane. Pfluegers Arch 422 280–286 Occurrence Handle1:CAS:528:DyaK3sXpvFCjtA%3D%3D

    CAS  Google Scholar 

  14. S.M. Johnson J.C. Smith J.L. Feldman (1996) ArticleTitleModulation of respiratory rhythm in vitro: role of Gi/o protein-mediated mechanisms. J. Appl. Physiol. 80 2120–2133 Occurrence Handle1:CAS:528:DyaK28XkslWgsro%3D Occurrence Handle8806921

    CAS  PubMed  Google Scholar 

  15. C. Karschin A. Karschin (1997) ArticleTitleOntogeny of gene expression of Kir channel subunits in the rat. Mol. Cell. Neurosci. 10 131–148 Occurrence Handle1:CAS:528:DyaK1cXitFCjtLY%3D

    CAS  Google Scholar 

  16. C.M. McNicholas G.G. MacGregor L.D. Islas Y. Yang S.C. Hebert G. Giebisch (1998) ArticleTitlepH-dependent modulation of the cloned renal K+ channel, ROMK. Am. J. Physiol. 275 F972–F981 Occurrence Handle1:CAS:528:DyaK1MXht1ynug%3D%3D Occurrence Handle9843915

    CAS  PubMed  Google Scholar 

  17. C.G. Nichols A.N. Lopatin (1997) ArticleTitleInward rectifier potassium channels. Annu. Rev. Physiol. 59 171–191 Occurrence Handle10.1146/annurev.physiol.59.1.171 Occurrence Handle1:CAS:528:DyaK2sXhvVSjt7c%3D Occurrence Handle9074760

    Article  CAS  PubMed  Google Scholar 

  18. W.L. Pearson M. Dourado M. Schreiber L. Salkoff C.G. Nichols (1999) ArticleTitleExpression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. J. Physiol. 514 639–653 Occurrence Handle1:CAS:528:DyaK1MXhsl2ltbY%3D Occurrence Handle9882736

    CAS  PubMed  Google Scholar 

  19. F. Perier C.M. Radeke C.A. Vandenberg (1994) ArticleTitlePrimary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus. Proc. Natl. Acad. Sci. USA 91 6240–6244 Occurrence Handle1:CAS:528:DyaK2cXlsFSit7Y%3D Occurrence Handle8016146

    CAS  PubMed  Google Scholar 

  20. M. Pessia S.J. Tucker K. Lee C.T. Bond J.P. Adelman (1996) ArticleTitleSubunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO J. 15 2980–2987 Occurrence Handle1:CAS:528:DyaK28XjvFCgs7g%3D Occurrence Handle8670799

    CAS  PubMed  Google Scholar 

  21. J. Pineda G.K. Aghajanian (1997) ArticleTitleCarbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 77 723–743 Occurrence Handle1:CAS:528:DyaK2sXhslGmtb4%3D Occurrence Handle9070748

    CAS  PubMed  Google Scholar 

  22. J.H. Schultz J. Czachurski T. Volk H. Ehmke H. Seller (2003) ArticleTitleCentral sympathetic chemosensitivity and Kir1 potassium channels in the cat. Brain Res. 963 113–120 Occurrence Handle10.1016/S0006-8993(02)03952-5 Occurrence Handle1:CAS:528:DC%2BD3sXmsV2iug%3D%3D Occurrence Handle12560116

    Article  CAS  PubMed  Google Scholar 

  23. M.E. Shuck T.M. Piser J.H. Bock J.L. Slightom K.S. Lee M.J. Bienkowski (1997) ArticleTitleCloning and characterization of two K+ inward rectifier (Kir) 1.1 potassium channel homologs from human kidney (Kir1.2 and Kir1.3). J. Biol. Chem. 272 586–593 Occurrence Handle10.1074/jbc.272.1.586 Occurrence Handle1:CAS:528:DyaK2sXjsFyisA%3D%3D Occurrence Handle8995301

    Article  CAS  PubMed  Google Scholar 

  24. J.C. Smith D.F. Funk S.M. Johnson J.L. Feldman (1995) Cellular and synaptic mechanisms generating respiratory rhythm: insights from in vitro and computational studies. C.O. Feldman R.M. Trouth H. Millis M.E. Kiwull-Schone (Eds) Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure. Dekker New York 463–496

    Google Scholar 

  25. M. Tanemoto N. Kittaka A. Inanobe Y. Kurachi (2000.) ArticleTitleIn vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J. Physiol. 525 587–592 Occurrence Handle1:CAS:528:DC%2BD3cXlsFansrs%3D Occurrence Handle10856114

    CAS  PubMed  Google Scholar 

  26. T.D. Tsai M.E. Shuck D.P. Thompson M.J. Bienkowski K.S. Lee (1995) ArticleTitleIntracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes. Am. J. Physiol. 268 C1173–C1178 Occurrence Handle1:CAS:528:DyaK2MXlvVajtL4%3D Occurrence Handle7762610

    CAS  PubMed  Google Scholar 

  27. S.J. Tucker P. Imbrici L. Salvatore M.C. D’Adamo M. Pessia (2000) ArticleTitlepH Dependence of the inwardly rectifying potassium channel, kir5.1, and localization in renal tubular epithelia. J. Biol. Chem. 275 16404–16407 Occurrence Handle10.1074/jbc.C000127200 Occurrence Handle1:CAS:528:DC%2BD3cXjvFCnt78%3D Occurrence Handle10764726

    Article  CAS  PubMed  Google Scholar 

  28. M. Vivaudou C. Forestier (1995) ArticleTitleModification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition. J. Physiol. 486 629–645 Occurrence Handle1:CAS:528:DyaK2MXnsV2htLY%3D Occurrence Handle7473225

    CAS  PubMed  Google Scholar 

  29. W. Wang S.C. Hebert G. Giebisch (1997) ArticleTitleRenal K+ channels: structure and function. Annu. Rev. Physiol. 59 413–436 Occurrence Handle10.1146/annurev.physiol.59.1.413 Occurrence Handle1:CAS:528:DyaK2sXhvVSjtb4%3D Occurrence Handle9074771

    Article  CAS  PubMed  Google Scholar 

  30. H. Xu N. Cui Z. Yang Z. Qu C. Jiang (2000) ArticleTitleModulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis. J. Physiol. 524 725–735 Occurrence Handle1:CAS:528:DC%2BD3cXjvFGgsbs%3D Occurrence Handle10790154

    CAS  PubMed  Google Scholar 

  31. C. Yang Z. Jiang (1999) ArticleTitleOpposite effects of pH on open-state probability and single-channel conductance of Kir4.1. J. Physiol. 520 921–927 Occurrence Handle1:CAS:528:DyaK1MXns1elsrk%3D Occurrence Handle10545154

    CAS  PubMed  Google Scholar 

  32. Z. Yang Z. Qu H. Xu N. Cui S. Chanchevalap W. Shen C. Jiang (2000) ArticleTitleBiophysical and molecular mechanisms for the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH. J. Gen. Physiol. 116 33–46 Occurrence Handle10.1085/jgp.116.1.33 Occurrence Handle1:CAS:528:DC%2BD3cXls1Klt7c%3D Occurrence Handle10871638

    Article  CAS  PubMed  Google Scholar 

  33. G.Y. Zhu S. Chanchevalap N. Cui C. Jiang (1999) ArticleTitleEffects of intra- and extracellular acidification on single channel Kir2.3 currents. J. Physiol. 516 699–710 Occurrence Handle1:CAS:528:DyaK1MXjt1OrtLc%3D Occurrence Handle10200419

    CAS  PubMed  Google Scholar 

  34. G.Y. Zhu C.X. Liu S. Chanchevalap H. Xu C. Jiang (2000) ArticleTitleCO2 inhibits specific inward rectifier K+ channels by decreases in intra- and extracellular pH. J. Cell Physiol. 183 53–64 Occurrence Handle10.1002/(SICI)1097-4652(200004)183:1<53::AID-JCP7>3.3.CO;2-I Occurrence Handle1:CAS:528:DC%2BD3cXhslWqtrk%3D Occurrence Handle10699966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Drs. John Adelman at Oregon Health University, Steven C. Hebert at Yale University and Carol A. Vandenberg at University of California at Santa Barbara for their generosity in sharing the Kir4.1, Kir5.1, Kir1.1 and Kir2.3 cDNAs. The authors are grateful to Ying Wang for her technical assistance. This work was supported by RO1 grants (HL058410, HL067890) from the NIH. CJ was a Career Investigator of the American Lung Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Xu, H., Shen, W. et al. Expression and Coexpression of CO2-sensitive Kir Channels in Brainstem Neurons of Rats . J. Membrane Biol. 197, 179–191 (2004). https://doi.org/10.1007/s00232-004-0652-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-004-0652-4

Keywords

Navigation