Skip to main content
Log in

K+-induced Ca2+ Conductance Responsible for the Prolonged Backward Swimming in K+-agitated Mutant of Paramecium caudatum

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript


The K+-agitated (Kag) mutant of Paramecium caudatum shows prolonged backward swimming in K+-rich solution. To understand the regulation mechanisms of the ciliary motility in P. caudatum, we examined the membrane electrical properties of the Kag mutant. The duration of the backward swimming of the Kag in K+-rich solution was about 10 times longer than that of the wild type. In response to an injection of the outward current, the wild type produced an initial action potential and a subsequent membrane depolarization due to I-R potential drop, while the Kag exhibited repetitive action potentials during the depolarization. Under voltage-clamp conditions, the depolarization-activated transient inward current exhibited by the Kag was slightly smaller than that exhibited by the wild type. In response to an application of K+-rich solution, both the wild type and the Kag exhibited a depolarizing afterpotential representing the activation of the K+-induced Ca2+ conductance. The inactivation time course of the K+-induced Ca2+ conductance of Kag was about 10 times longer than that of the wild type. This difference corresponds well with the difference in behavioral responses between Kag and wild type to K+-rich solution. We conclude that the overreaction of the Kag mutant to the K+-rich solution is caused by slowing down of the inactivation of the K+-induced Ca2+ conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others


  1. P. Brehm R. Eckert (1978) ArticleTitleCalcium entry leads to inactivation of calcium channels in Paramecium. Science 202 1203–1206 Occurrence Handle1:CAS:528:DyaE1MXltFaisg%3D%3D Occurrence Handle103199

    CAS  PubMed  Google Scholar 

  2. R. Eckert (1972) ArticleTitleBioelectric control of ciliary activity. Science 176 173–481 Occurrence Handle4335386

    PubMed  Google Scholar 

  3. T.M. Hennessey C. Kung (1985) ArticleTitleSlow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium. J. Physiol. 365 165–179 Occurrence Handle1:CAS:528:DyaL2MXkvVCksbs%3D Occurrence Handle2411920

    CAS  PubMed  Google Scholar 

  4. T.M. Hennessey C. Kung (1987) ArticleTitleElectrophysiological evidence suggests a defective Ca2+ control mechanism in a new Paramecium mutant. J. Membrane Biol. 98 275–283

    Google Scholar 

  5. T.M. Hennessey L.E. Frego J.T. Francis (1994) ArticleTitleOxidants act as chemorepellents in Paramecium by stimulating an electrogenic plasma membrane reductase activity. J. Comp. Physiol. A 175 655–665 Occurrence Handle1:STN:280:ByqD2MrjtFE%3D Occurrence Handle7965925

    CAS  PubMed  Google Scholar 

  6. T.M. Hennessey M.Y. Kim B.H. Satir (1995) ArticleTitleLysozyme acts as a chemorepellent and secretagogue in Paramecium by activating a novel receptor-operated Ca++ conductance. J. Membrane Biol. 148 13–25 Occurrence Handle1:CAS:528:DyaK2MXpsVejtLo%3D

    CAS  Google Scholar 

  7. R.D. Hinrichsen Y. Saimi (1984) ArticleTitleA mutation that alters properties of the calcium channel in Paramecium tetraurelia. J. Physiol. 351 397–410 Occurrence Handle1:CAS:528:DyaL2cXktVelt78%3D Occurrence Handle6086904

    CAS  PubMed  Google Scholar 

  8. J.A. Kink R.E. Maley R.R. Preston K.-Y. Ling M.A. Warren-Friedman Y. Saimi C. Kung (1990) ArticleTitleMutations in Paramecium calmodulin indicate functional difference between the C-terminal and N-terminal lobes in vivo. Cell 62 165–174 Occurrence Handle1:CAS:528:DyaK3MXhsVCj Occurrence Handle2163766

    CAS  PubMed  Google Scholar 

  9. C. Kung (1971a) ArticleTitleGenic mutations with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics 69 29–45 Occurrence Handle1:STN:280:CS2D2sjpsFA%3D

    CAS  Google Scholar 

  10. C. Kung (1971b) ArticleTitleGenic mutations with altered system of excitation in Paramecium aurelia. I. Phenotypes of the behavioural mutants. Z. Vergl. Physiol. 71 142–164

    Google Scholar 

  11. Y. Naitoh (1968) ArticleTitleIonic control of the reversal response of cilia in Paramecium caudatum. J. Gen. Physiol. 51 85–103 Occurrence Handle1:CAS:528:DyaF1cXns1Shtw%3D%3D Occurrence Handle4966766

    CAS  PubMed  Google Scholar 

  12. Y. Naitoh (1974) ArticleTitleBioelectric basis of behavior in protozoa. Am. Zool. 14 883–893 Occurrence Handle1:CAS:528:DyaE2MXktVCmtQ%3D%3D

    CAS  Google Scholar 

  13. Y. Naitoh R. Eckert (1969) ArticleTitleIonic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164 963–965 Occurrence Handle1:CAS:528:DyaF1MXktlKmt78%3D Occurrence Handle5768366

    CAS  PubMed  Google Scholar 

  14. Y. Naitoh H. Kaneko (1972) ArticleTitleReactivated Triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions. Science 176 523–524 Occurrence Handle1:CAS:528:DyaE38XktVaksb4%3D Occurrence Handle5032354

    CAS  PubMed  Google Scholar 

  15. K. Oami (1996a) ArticleTitleMembrane potential responses controlling chemodispersal of Paramecium caudatum from quinine. J. Comp. Physiol. A 178 307–316

    Google Scholar 

  16. K. Oami (1996b) ArticleTitleDistribution of chemoreceptors to quinine on the cell surface of Paramecium caudatum. J. Comp. Physiol. A 179 345–352 Occurrence Handle1:CAS:528:DyaK2sXjtlahur0%3D

    CAS  Google Scholar 

  17. K. Oami (1998a) ArticleTitleMembrane potential responses of Paramecium caudatum to bitter substances: existence of multiple pathways for bitter responses. J. Exp. Biol. 201 13–20 Occurrence Handle1:CAS:528:DyaK1cXpsFKmsg%3D%3D

    CAS  Google Scholar 

  18. K. Oami (1998b) ArticleTitleIonic mechanisms of depolarizing and hyperpolarizing quinine receptor potentials in Paramecium caudatum. J. Comp. Physiol. A 182 403–409 Occurrence Handle1:CAS:528:DyaK1cXisVCntb4%3D

    CAS  Google Scholar 

  19. K. Oami M. Takahashi (1998) ArticleTitleMembrane potential responses to K+ stimulation and membrane electric characteristics of the K+-agitated mutant of Paramecium caudatum. Zool. Sci. 15 Supplement 103

    Google Scholar 

  20. K. Oami M. Takahashi (2002) ArticleTitleIdentification of the Ca2+ conductance responsible for K+-induced backward swimming in Paramecium caudatum. J. Membrane Biol. 190 159–165 Occurrence Handle1:CAS:528:DC%2BD38XpsV2iur4%3D

    CAS  Google Scholar 

  21. R.R. Preston J.A. Hammond (1998) ArticleTitleCa2+ current-deficient Pawn mutants are promoted to queens during chronic depolarization of Paramecium tetraurelia. J. Membrane Biol. 171 245–253 Occurrence Handle10.1007/s002329900575

    Article  Google Scholar 

  22. R. Ramanathan Y. Saimi R. Hinrichsen A. Burgess-Cassler C. Kung (1988) A genetic dissection of the ion channel functions. H.D. Goertz (Eds) Paramecium. Springer-Verlag New York 236–253

    Google Scholar 

  23. Y. Saimi C. Kung (1980) ArticleTitleA Ca-induced Na+ current in Paramecium. J. Exp. Biol. 88 305–325 Occurrence Handle1:CAS:528:DyaL3MXmtFeqtg%3D%3D Occurrence Handle7452141

    CAS  PubMed  Google Scholar 

  24. Y Saimi C. Kung (1994) ArticleTitleIon channel regulation by calmodulin binding. FEBS Letters 350 155–158 Occurrence Handle10.1016/0014-5793(94)00782-9 Occurrence Handle1:CAS:528:DyaK2cXmslCmtr4%3D Occurrence Handle8070555

    Article  CAS  PubMed  Google Scholar 

  25. M. Takahashi (1979) ArticleTitleBehavioral mutants in Paramecium caudatum. Genetics 91 393–408 Occurrence Handle1:CAS:528:DyaE1MXktFKmsL8%3D

    CAS  Google Scholar 

  26. M. Takahashi (1988) Behavioral genetics in P. caudatum. H.D. Goertz (Eds) Paramecium. Springer-Verlag New York 271–281

    Google Scholar 

  27. M. Takahashi N. Haga T. Hennessey R.D. Hinrichsen R. Hara (1985) ArticleTitleA gamma ray induced non-excitable membrane mutant in Paramecium caudatum: a behavioral and genetic analysis. Genet. Res. Camb. 46 1–10 Occurrence Handle1:STN:280:BimD2MnptlE%3D

    CAS  Google Scholar 

  28. M. Takahashi Y. Naitoh (1978) ArticleTitleBehavioral mutants of Paramecium caudatum with defective membrane electrogenesis. Nature 271 656–658 Occurrence Handle1:STN:280:CSeC3Mvgslc%3D Occurrence Handle625333

    CAS  PubMed  Google Scholar 

  29. J. Van Houten (1992) ArticleTitleChemosensory transduction in eucaryotic microorganisms. Annu. Rev. Physiol. 54 639–663 Occurrence Handle1:CAS:528:DyaK38XisFWksLs%3D Occurrence Handle1562186

    CAS  PubMed  Google Scholar 

Download references


This work was supported by a grant from the Ministry of Sports, Culture, Science, and Education of Japan (09640802) and a research project of the University of Tsukuba.

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Oami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oami, K., Takahashi, M. K+-induced Ca2+ Conductance Responsible for the Prolonged Backward Swimming in K+-agitated Mutant of Paramecium caudatum . J. Membrane Biol. 195, 85–92 (2003).

Download citation

  • Received:

  • Issue Date:

  • DOI: