Skip to main content
Log in

Stimulation of Transepithelial Na+ Current by Extracellular Gd3+ in Xenopus laevis Alveolar Epithelium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. H. Abriel J.D. Horisberger (1999) ArticleTitleFeedback inhibition of rat amiloride-sensitive epithelial sodium channels expressed in Xenopus laevis oocytes. J. Physiol. 516 31–43 Occurrence Handle1:CAS:528:DyaK1MXjtFGksLo%3D Occurrence Handle10066920

    CAS  PubMed  Google Scholar 

  2. N.J. Allen D. Attwell (2002) ArticleTitleModulation of ASIC channels in rat cerebellar Purkinje neurons by ischaemia-related signals. J. Physiol. 543 521–529 Occurrence Handle1:CAS:528:DC%2BD38Xnsl2rsrk%3D Occurrence Handle12205186

    CAS  PubMed  Google Scholar 

  3. K. Babinski S. Catarsi G. Biagini P. Seguela (2000) ArticleTitleMammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J. Biol. Chem. 275 28519–28525 Occurrence Handle1:CAS:528:DC%2BD3cXms1Cru7c%3D Occurrence Handle10842183

    CAS  PubMed  Google Scholar 

  4. E.M. Brown G. Gamba D. Riccardi M. Lombardi R. Butters O. Kifor A. Sun M.A. Hediger J. Lytton S.C. Hebert (1993) ArticleTitleCloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366 575–580

    Google Scholar 

  5. R.A. Caldwell H.F. Clemo C.M. Baumgarten (1998) ArticleTitleUsing gadolinium to identify stretch-activated channels: technical considerations. Am. J. Physiol. 275 C619–C621 Occurrence Handle1:CAS:528:DyaK1cXlsVCksbw%3D Occurrence Handle9688617

    CAS  PubMed  Google Scholar 

  6. A. Chraibi J.D. Horisberger (2002) ArticleTitleNa+ self inhibition of human epithelial Na+ channel: Temperature dependence and effect of extracellular proteases. J. Gen. Physiol. 120 133–145 Occurrence Handle1:CAS:528:DC%2BD38Xms1ShsLY%3D Occurrence Handle12149276

    CAS  PubMed  Google Scholar 

  7. A. Dinudom K.F. Harvey P. Komwatana J.A. Young S. Kumar D.I. Cook (1998) ArticleTitleNedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+ Proc. Natl. Acad. Sci. USA 95 7169–7173 Occurrence Handle1:CAS:528:DyaK1cXjslymtrk%3D Occurrence Handle9618557

    CAS  PubMed  Google Scholar 

  8. W.J. Els K.Y. Chou (1993) ArticleTitleSodium-dependent regulation of epithelial sodium channel densities in frog skin; a role for the cytoskeleton. J. Physiol. 462 447–464 Occurrence Handle1:STN:280:ByyA38zgt1c%3D Occurrence Handle8392570

    CAS  PubMed  Google Scholar 

  9. T.J. Farr S.J. Coddington-Lawson P.M. Snyder F.J. McDonald (2000) ArticleTitleHuman Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits. Biochem. J. 345 503–509 Occurrence Handle1:CAS:528:DC%2BD3cXisFOlsbg%3D Occurrence Handle10642508

    CAS  PubMed  Google Scholar 

  10. H. Fischer W. Van Driessche W. Clauss (1989) ArticleTitleEvidence for apical sodium channels in the frog lung epithelial cells. Am. J. Physiol. 256 C764–C771 Occurrence Handle1:STN:280:BiaB3crms1U%3D Occurrence Handle2539725

    CAS  PubMed  Google Scholar 

  11. S. Friis R. Nielsen (2001) ArticleTitleEffect of the putative Ca2+-receptor agonist Gd3+ on the active transepithelial Na+ transport in frog skin. J. Membrane Biol. 184 291–297 Occurrence Handle1:CAS:528:DC%2BD38XktlKjsQ%3D%3D

    CAS  Google Scholar 

  12. G. Frindt L.G. Palmer E.E. Windhager (1996) ArticleTitleFeedback regulation of Na+ channels in rat CCT. IV. Mediation by activation of protein kinase C. Am. J. Physiol. 270 F371–F376 Occurrence Handle1:CAS:528:DyaK28Xhs1aisLc%3D Occurrence Handle8779899

    CAS  PubMed  Google Scholar 

  13. W. Fuchs E.H. Larsen B. Lindemann (1977) ArticleTitleCurrent-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J. Physiol. 267 137–166 Occurrence Handle1:STN:280:CSiB3cbmt1I%3D Occurrence Handle301566

    CAS  PubMed  Google Scholar 

  14. S. Fuma H. Takeda K. Miyamoto K. Yanagisawa Y. Inoue N. Ishii K. Sugai C. Ishii Z. Kawabata (2001) ArticleTitleEcological evaluation of gadolinium toxicity compared with other heavy metals using an aquatic microcosm. Bull. Environ. Contam. Toxicol. 66 231–238 Occurrence Handle1:CAS:528:DC%2BD3MXit1Oju7o%3D Occurrence Handle11116319

    CAS  PubMed  Google Scholar 

  15. H. Garty L.G. Palmer (1997) ArticleTitleEpithelial sodium channels: function, structure, and regulation. Physiol. Rev. 77 359–396 Occurrence Handle1:CAS:528:DyaK2sXjtF2ktrg%3D Occurrence Handle9114818

    CAS  PubMed  Google Scholar 

  16. T.A. Gilbertson H. Zhang (1998) ArticleTitleSelf-inhibition in amiloride-sensitive sodium channels in taste receptor cells. J. Gen. Physiol. 111 667–677 Occurrence Handle1:CAS:528:DyaK1cXjtFWgsbk%3D Occurrence Handle9565404

    CAS  PubMed  Google Scholar 

  17. O.P. Hamill DW McBride Jr. (1996) ArticleTitleThe pharmacology of mechanogated membrane ion channels. Pharmacol. Rev. 48 231–252 Occurrence Handle1:CAS:528:DyaK28Xks1Whur4%3D Occurrence Handle8804105

    CAS  PubMed  Google Scholar 

  18. K.F. Harvey A. Dinudom D.I. Cook S. Kumar (2001) ArticleTitleThe Nedd4-like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J. Biol. Chem. 276 8597–8601 Occurrence Handle1:CAS:528:DC%2BD3MXitFKgtbk%3D Occurrence Handle11244092

    CAS  PubMed  Google Scholar 

  19. S.D. Hillyard K. Rios E.H. Larsen (2002) ArticleTitleBasolateral Cl channels in the larval bullfrog skin epithelium. J. Comp. Physiol. B. 172 577–586 Occurrence Handle1:CAS:528:DC%2BD38Xns1eisbk%3D Occurrence Handle12355226

    CAS  PubMed  Google Scholar 

  20. T. Ishikawa Y. Marunaka D. Rotin (1998) ArticleTitleElectrophysiological characterization of the rat epithelial Na+ channel (rENaC) expressed in MDCK cells. Effects of Na+ and Ca2+. J. Gen. Physiol. 111 825–846 Occurrence Handle1:CAS:528:DyaK1cXjvFWns7Y%3D Occurrence Handle9607939

    CAS  PubMed  Google Scholar 

  21. L. Jain X.J. Chen S. Ramosevac L.A. Brown D.C. Eaton (2001) ArticleTitleExpression of highly selective sodium channels in alveolar type II cells is determined by culture conditions. Am. J. Physiol. 280 L646–L658 Occurrence Handle1:CAS:528:DC%2BD3MXjtV2jsL4%3D

    CAS  Google Scholar 

  22. S. Kellenberger L. Gautschi L. Schild (2002) ArticleTitleAn external site controls closing of the epithelial Na+ channel ENaC. J. Physiol. 543 413–424 Occurrence Handle10.1113/jphysiol.2002.022020 Occurrence Handle1:CAS:528:DC%2BD38Xnsl2ku7c%3D Occurrence Handle12205178

    Article  CAS  PubMed  Google Scholar 

  23. S. Kellenberger L. Schild (2002) ArticleTitleEpithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol. Rev. 82 735–767 Occurrence Handle1:CAS:528:DC%2BD38XlslCmt7w%3D Occurrence Handle12087134

    CAS  PubMed  Google Scholar 

  24. K.J. Kim (1990) ArticleTitleActive Na+ transport across Xenopus lung alveolar epithelium. Respir. Physiol. 81 29–40 Occurrence Handle1:CAS:528:DyaK3MXit1Kjt7s%3D Occurrence Handle2218105

    CAS  PubMed  Google Scholar 

  25. V. Koefoed-Johnson H.H. Ussing (1958) ArticleTitleThe nature of the frog skin potential. Acta Physiol. Scand. 42 298–308

    Google Scholar 

  26. P. Komwatana A. Dinudom J.A. Young D.I. Cook (1996) ArticleTitleCytosolic Na+ controls an epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc. Natl. Acad. Sci. USA 93 8107–8111 Occurrence Handle1:CAS:528:DyaK28XksFSqsrk%3D Occurrence Handle8755611

    CAS  PubMed  Google Scholar 

  27. P. Komwatana A. Dinudom J.A. Young D.I. Cook (1998) ArticleTitleActivators of epithelial Na+ channels inhibit cytosolic feedback control. Evidence for the existence of a G protein-coupled receptor for cytosolic Na+. J. Membrane Biol. 162 225–232 Occurrence Handle1:CAS:528:DyaK1cXis1Kms78%3D

    CAS  Google Scholar 

  28. J.H. Li B. Lindemann (1983) ArticleTitleChemical stimulation of Na+ transport through amiloride-blockable channels of frog skin epithelium. J. Membrane Biol. 75 179–192 Occurrence Handle1:CAS:528:DyaL2cXktVI%3D

    CAS  Google Scholar 

  29. B. Lindemann (1984) ArticleTitleFluctuation analysis of sodium channels in epithelia. Annu. Rev. Physiol. 46 497–515 Occurrence Handle1:STN:280:BiuC2sjjtFw%3D Occurrence Handle6324660

    CAS  PubMed  Google Scholar 

  30. B.N. Ling D.C. Eaton (1989) ArticleTitleEffects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am. J. Physiol. 256 F1094–F1103 Occurrence Handle1:CAS:528:DyaL1MXkslGhtLk%3D Occurrence Handle2544105

    CAS  PubMed  Google Scholar 

  31. L.G. Palmer H. Sackin G. Frindt (1998) ArticleTitleRegulation of Na+ channels by luminal Na+ in rat cortical collecting tubule. J. Physiol. 509 151–162 Occurrence Handle1:CAS:528:DyaK1cXjvFKqsrw%3D Occurrence Handle9547389

    CAS  PubMed  Google Scholar 

  32. A. Puoti A. May B.C. Rossier J.D. Horisberger (1997) ArticleTitleNovel isoforms of the beta and gamma subunits of the Xenopus epithelial Na+ channel provide information about the amiloride binding site and extracellular sodium-sensing. Proc. Natl. Acad. Sci. USA 94 5949–5954 Occurrence Handle1:CAS:528:DyaK2sXjsFOkt78%3D Occurrence Handle9159181

    CAS  PubMed  Google Scholar 

  33. K. Ray J. Northup (2002) ArticleTitleEvidence for distinct cation and calcimimetic compound (NPS 568) recognition domains in the transmembrane regions of the human Ca2+ receptor. J. Biol. Chem. 277 18908–18913 Occurrence Handle1:CAS:528:DC%2BD38XktFChtrs%3D Occurrence Handle11880385

    CAS  PubMed  Google Scholar 

  34. F.W. Reifarth W. Clauss W.M. Weber (1999) ArticleTitleStretch-independent activation of the mechanosensitive cation channel inoocytes of Xenopus laevis. Biochim. Biophys. Acta 1417 63–76 Occurrence Handle1:CAS:528:DyaK1MXhsVylurk%3D Occurrence Handle10076036

    CAS  PubMed  Google Scholar 

  35. P.M. Snyder D.B. Bucher D.R. Olson (2000) ArticleTitleGating induces a conformational change in the outer vestibule of ENaC. J. Gen. Physiol 116 781–790 Occurrence Handle1:CAS:528:DC%2BD3cXovFGnt74%3D Occurrence Handle11099347

    CAS  PubMed  Google Scholar 

  36. O. Staub H. Abriel P. Plant T. Ishikawa V. Kanelis R. Saleki J.D. Horisberger L. Schild D. Rotin (2000) ArticleTitleRegulation of the epithelial Na+ channel by Nedd4 and ubiquitination. Kidney Int. 57 809–815 Occurrence Handle1:CAS:528:DC%2BD3cXktFGgsbs%3D Occurrence Handle10720933

    CAS  PubMed  Google Scholar 

  37. S. Sunano (1982) ArticleTitleActions of manganese and lanthanum on smooth muscles. Nippon. Yakurigaku. Zasshi. 80 93–104 Occurrence Handle1:CAS:528:DyaL38Xlt1Clsro%3D Occurrence Handle6757068

    CAS  PubMed  Google Scholar 

  38. W. Thurmond W. Kloas W. Hanke (1986) ArticleTitleCircadian rhythm of inter-renal activity in Xenopus laevis. Gen. Comp. Endocrinol. 61 260–271 Occurrence Handle1:CAS:528:DyaL28Xms1ehsg%3D%3D Occurrence Handle3007269

    CAS  PubMed  Google Scholar 

  39. K. Turnheim (1991) ArticleTitleIntrinsic regulation of apical sodium entry in epithelia. Physiol. Rev. 71 429–445 Occurrence Handle1:STN:280:By6C2s3ovFE%3D Occurrence Handle1706528

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kristek, B. Kahnert and M. Buss for excellent technical assistance. The authors thank Professor B.C. Rossier for providing the Xenopus cDNA. All experiments were in agreement with the German “Laws of animal care” [permission II 25.3-19c, 20.15(1)]. The present study was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fronius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fronius, M., Clauss, W. & Schnizler, M. Stimulation of Transepithelial Na+ Current by Extracellular Gd3+ in Xenopus laevis Alveolar Epithelium . J. Membrane Biol. 195, 43–51 (2003). https://doi.org/10.1007/s00232-003-2043-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-003-2043-7

Keywords

Navigation