Skip to main content
Log in

Low Reynolds number flow inside straight micro channels with irregular cross sections

  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the compound effect of finite temperature differences and fluid friction on the existence of an optimum laminar flow regime in singly connected micro channels with complex free flow area cross sections. A widespread conviction has been established that the two competing irreversibility sources in a channel flow with heat transfer lead to the existence of an optimum flow regime. The results presented in this paper clearly shows the opposite. When an objective function is represented by the entropy generation rate per unit heat capacity rate of the fluid stream, the thermodynamic optimum flow regime represents a rather rare occurrence in the laminar region of irregularly shaped ducts. The presence of an extremum is more probable for very small diameters, the ones of an order of magnitude of O(≤10−3 m). The analysis is performed for selected ranges of relevant geometric, flow, and thermal parameters of a set of straight micro channels with irregular free flow area cross-sections. The following geometries of the free flow area cross section were investigated: (i) sine duct, (ii) circular duct, (iii) elliptical duct, (iv) moon-shaped ducts, and (v) four-cuspped duct. The range of Reynolds numbers has been established between O(102) and O(104). The existence of the objective function minimum is confirmed for ducts with an irregular cross section only for very small hydraulic diameters. These minima are relatively weak, and as a general rule, the sets of optimum parameters are close to the onset of turbulence or possibly even in the transitional or turbulent regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received on 10 November 1998

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, D., Sekulic, D. & Campo, A. Low Reynolds number flow inside straight micro channels with irregular cross sections. Heat and Mass Transfer 36, 187–193 (2000). https://doi.org/10.1007/s002310050383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002310050383

Keywords

Navigation