Skip to main content
Log in

Applications of pulsating heat pipe (PHP) as an efficient heat transfer device: a review of recent developments

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Pulsating Heat Pipe (PHP) is an emerging efficient heat transfer device, that transfers heat passively through oscillating motions of liquid slugs and vapor plugs within the device. PHP is of high effective thermal conductivity with great potential in heat transfer management for various applications. The objective of this review paper is to summarize and analyse the applications of PHP in various fields that have been reported in the open literature, emphasizing on studies reported in past half decade. The thermo-hydraulic behaviour of PHP is influenced by numerous geometric and operational parameters, which are discussed in detail in the first part of the paper. The thermal performance of the PHP under rotation condition, which is seldom discussed in previous review articles, is also discussed. These parameters act individually and in tandem to alter the performance of PHP, which makes its prediction extremely difficult. However, the benefit of numerous influencing parameters is that they can be altered to make PHP suitable for various applications. These highly variable configurations make PHP suitable for applications such as the transfer of absorbed solar energy to the location of interest, waste heat recovery, thermal management of electric vehicle batteries, fuel cells, cooling of electronic components etc. PHPs are recently being studied for applications in cryogenics and cooling of cutting tools in the machining process also. In addition, novel applications of PHP such as high-performance fins for heat exchangers, cooling of building roofs etc. are also being reported. All these applications of PHP reported in the open literature are reviewed and summarized in the present article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(reprinted with permission)

Fig. 5
Fig. 6

(reprinted with permission)

Fig. 7

(reprinted with permission)

Fig. 8

(reprinted with permission)

Fig. 9
Fig. 10

(reprinted with permission)

Fig. 11

(reprinted with permission)

Fig. 12

(reprinted with permission)

Fig. 13

(reprinted with permission)

Fig. 14
Fig. 15
Fig. 16

(reprinted with permission)

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

PHP:

Pulsating heat pipe

OHP:

Oscillating heat pipe

CTPHP:

Capillary tube pulsating heat pipe

CLPHP:

Closed loop pulsating heat pipe

FPPHP:

Flat plate pulsating heat pipe

MPHP:

Micro pulsating heat pipe

HVAC:

Heating, ventilation, and air conditioning

PCM:

Phase change material

CPC:

Compound parabolic concentrator

PV:

Photo-voltaic

HRV:

Heat recovery ventilator

EV:

Electric vehicle

BTMS:

Battery thermal management system

PEM:

Proton exchange membrane

SCT:

Self cooling tool

References

  1. Akachi H (1990) Structure of a heat pipe US patent 4921041. n.d.

  2. Akachi H (1993) Structure of Micro-heat Pipe. U S Patent Number 5219020 n.d.

  3. Khandekar S, Groll M (2003) On the definition of pulsating heat pipes: an overview. Proc 5th Minsk Int Semin (Heat Pipes Heat Pumps Refrig 3:12

    Google Scholar 

  4. Shukla AK, Patel ED, Kumar S (2024) Study of an asymmetric dual loop pulsating heat pipe: visualization and parametric analysis. Appl Therm Eng 245:6–14. https://doi.org/10.1016/j.applthermaleng.2024.122842

    Article  Google Scholar 

  5. Rittidech S, Phalasin K (2005) Effect of geometry and dimensionless parameters on heat transfer characteristics of a Closedâ€end oscillating heat-pipe at Vertical position. Am J Appl Sci 2:1493–1498. https://doi.org/10.3844/ajassp.2005.1493.1498

    Article  Google Scholar 

  6. Zhang XM, Xu JL, Zhou ZQ (2004) Experimental study of a pulsating heat pipe using fc-72, ethanol, and water as working fluids. Exp Heat Transf 17:47–67. https://doi.org/10.1080/08916150490246546

    Article  Google Scholar 

  7. Kim J-S, Bui NH, Kim J-W, Kim J-H, Jung H-S (2003) Flow visualization of Oscillation characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe. 17

  8. Mameli M, Manno V, Filippeschi S, Marengo M (2014) Thermal instability of a closed Loop pulsating Heat Pipe: combined effect of orientation and filling ratio. Exp Therm Fluid Sci 59:222–229. https://doi.org/10.1016/j.expthermflusci.2014.04.009

    Article  Google Scholar 

  9. Zhang D, He Z, Guan J, Tang S, Shen C (2022) Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: an experimental study. Int J Heat Mass Transf 183. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100

  10. Khandekar S (2003) Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes. Microscale Thermophys Eng 6:303–317. https://doi.org/10.1080/10893950290098340

    Article  Google Scholar 

  11. Takawale A, Abraham S, Siela A, Sinha P, Pattamatta A, Stephan P A comparative study of fl ow regimes and thermal performance between fl at plate pulsating heat pipe and capillary tube pulsating heat pipe 2019;149:613–624. https://doi.org/10.1016/j.applthermaleng.2018.11.119

  12. Qu J, Zhao J, Rao Z (2017) Experimental investigation on the thermal performance of three-dimensional oscillating heat pipe. Int J Heat Mass Transf 109:589–600. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.040

    Article  Google Scholar 

  13. Abraham S, Takawale A, Stephan P, Pattamatta A (2021) Thermal characteristics of a three-dimensional coil type pulsating heat pipe at different heating modes. J Therm Sci Eng Appl 13. https://doi.org/10.1115/1.4048760

  14. Han X, Wang X, Zheng H, Xu X, Chen G (2016) Review of the development of pulsating heat pipe for heat dissipation. Renew Sustain Energy Rev 59:692–709. https://doi.org/10.1016/j.rser.2015.12.350

    Article  Google Scholar 

  15. Bastakoti D, Zhang H, Li D, Cai W, Li F (2018) An overview on the developing trend of pulsating heat pipe and its performance. Appl Therm Eng 141:305–332. https://doi.org/10.1016/j.applthermaleng.2018.05.121

    Article  Google Scholar 

  16. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB (2018) How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev 91:630–638. https://doi.org/10.1016/j.rser.2018.04.042

    Article  Google Scholar 

  17. Xu Y, Xue Y, Qi H, Cai W An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes. Renew Sustain Energy Rev 2021;144. https://doi.org/10.1016/j.rser.2021.110995

  18. Zhang D, He Z, Jiang E, Shen C, Zhou J (2021) A review on start-up characteristics of the pulsating heat pipe. Heat Mass Transf Und Stoffuebertragung 57:723–735. https://doi.org/10.1007/s00231-020-02998-4

    Article  Google Scholar 

  19. Charoensawan P, Khandekar S, Groll M, Terdtoon P (2003) Closed loop pulsating heat pipes - part A: Parametric experimental investigations. Appl Therm Eng 23:2009–2020. https://doi.org/10.1016/S1359-4311(03)00159-5

    Article  Google Scholar 

  20. Charoensawan P, Khandekar S Closed loop pulsating heat pipes part A: parametric experimental investigations 2009;23:2009–2020. https://doi.org/10.1016/S1359-4311(03)00159-5

  21. Yang H, Khandekar S, Groll M (2008) Operational limit of closed loop pulsating heat pipes. Appl Therm Eng 28:49–59. https://doi.org/10.1016/j.applthermaleng.2007.01.033

    Article  Google Scholar 

  22. Saha M, Feroz CM, Ahmed F, Mujib T (2012) Thermal performance of an open loop closed end pulsating heat pipe. Heat Mass Transf Und Stoffuebertragung 48:259–265. https://doi.org/10.1007/s00231-011-0882-9

    Article  Google Scholar 

  23. Zhang Y, Faghri A (2008) Advances and unsolved issues in pulsating heat pipes. Heat Transf Eng 29:20–44. https://doi.org/10.1080/01457630701677114

    Article  Google Scholar 

  24. Tseng CY, Yang KS, Chien KH, Jeng MS, Wang CC (2014) Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters. Exp Therm Fluid Sci 54:85–92. https://doi.org/10.1016/j.expthermflusci.2014.01.019

    Article  Google Scholar 

  25. Ji Y, Chu L, Ma H, Shen Y, Zhu X, Yu C et al (2024) Dynamic critical diameter of an oscillating heat pipe in vertical orientation. Int Commun Heat Mass Transf 150. https://doi.org/10.1016/j.icheatmasstransfer.2023.107178

  26. Kwon GH, Kim SJ (2014) Operational characteristics of pulsating heat pipes with a dual-diameter tube. Int J Heat Mass Transf 75:184–195. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.032

    Article  Google Scholar 

  27. Liu Y, Dan D, Wei M, Zheng S, Sun J (2024) Numerical investigation on the start-up and heat transfer performance of dual-diameter pulsating heat pipes. Appl Therm Eng 236. https://doi.org/10.1016/j.applthermaleng.2023.121709

  28. Fallahzadeh R, Aref L, Bozzoli F, Cattani L, Gholami H A novel triple-diameter pulsating heat pipe: Flow regimes and heat transfer performance. Therm Sci Eng Prog 2023;42. https://doi.org/10.1016/j.tsep.2023.101902

  29. Katpradit T, Wongratanaphisan T, Terdtoon P, Kamonpet P, Polchai A, Akbarzadeh A (2005) Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state. Appl Therm Eng 25:2138–2151. https://doi.org/10.1016/j.applthermaleng.2005.01.009

    Article  Google Scholar 

  30. Charoensawan P, Terdtoon P (2008) Thermal performance of horizontal closed-loop oscillating heat pipes. Appl Therm Eng 28:460–466. https://doi.org/10.1016/j.applthermaleng.2007.05.007

    Article  Google Scholar 

  31. Wang J, Ma H, Zhu Q (2015) Effects of the evaporator and condenser length on the performance of pulsating heat pipes. Appl Therm Eng 91:1018–1025. https://doi.org/10.1016/j.applthermaleng.2015.08.106

    Article  Google Scholar 

  32. Kim J, Kim SJ (2018) Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe. Appl Therm Eng 130:439–448. https://doi.org/10.1016/j.applthermaleng.2017.11.009

    Article  Google Scholar 

  33. Li Q, Wang C, Wang Y, Wang Z, Li H, Lian C (2020) Study on the effect of the adiabatic section parameters on the performance of pulsating heat pipes. Appl Therm Eng 180:115813. https://doi.org/10.1016/j.applthermaleng.2020.115813

    Article  Google Scholar 

  34. Czajkowski C, Nowak AI, Błasiak P, Ochman A, Pietrowicz S (2020) Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water. Appl Therm Eng 165:114534. https://doi.org/10.1016/j.applthermaleng.2019.114534

    Article  Google Scholar 

  35. Khandekar S, Dollinger N, Groll M (2003) Understanding operational regimes of closed loop pulsating heat pipes: an experimental study. Appl Therm Eng 23:707–719. https://doi.org/10.1016/S1359-4311(02)00237-5

    Article  Google Scholar 

  36. Quan L, Jia L Mnhmt2009-18080 experimental study on heat transfer. Characteristic Plate 2017:1–6

  37. Lee J, Joo Y, Kim SJ (2018) Effects of the number of turns and the inclination angle on the operating limit of micro pulsating heat pipes. Int J Heat Mass Transf 124:1172–1180. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.054

    Article  Google Scholar 

  38. Vassilev M, Avenas Y, Schaeffer C, Schanen JL, Schulz-Harder J (2007) Experimental study of a pulsating heat pipe with combined circular and square section channels. Conf Rec - IAS Annu Meet (IEEE Ind Appl Soc 1419–1425. https://doi.org/10.1109/IAS.2007.219

  39. Qu J, Wu H, Cheng P Experimental study on thermal performance of a silicon-based micro pulsating heat pipe. Proc ASME Micro/Nanoscale Heat Mass Transf Int Conf 2009, MNHMT2009 2010;3:629–34. https://doi.org/10.1115/MNHMT2009-18525

  40. Chien KH, Lin YT, Chen YR, Yang KS, Wang CC (2012) A novel design of pulsating heat pipe with fewer turns applicable to all orientations. Int J Heat Mass Transf 55:5722–5728. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.068

    Article  Google Scholar 

  41. Xue Z, Qu W (2014) Experimental study on effect of inclination angles to ammonia pulsating heat pipe. Chin J Aeronaut 27:1122–1127. https://doi.org/10.1016/j.cja.2014.08.004

    Article  Google Scholar 

  42. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M (2016) Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci 74:265–270. https://doi.org/10.1016/j.expthermflusci.2016.01.003

    Article  Google Scholar 

  43. Xu D, Li L, Liu H (2016) Experimental investigation on the thermal performance of Helium based cryogenic pulsating heat pipe. Exp Therm Fluid Sci 70:61–68. https://doi.org/10.1016/j.expthermflusci.2015.08.024

    Article  Google Scholar 

  44. Jun S, Kim SJ (2019) Experimental study on a criterion for normal operation of pulsating heat pipes in a horizontal orientation. Int J Heat Mass Transf 137:1064–1075. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.163

    Article  Google Scholar 

  45. Shafiei A, Ahmadi R, Amini M (2024) Oscillating heat pipe performance in various gravity force implementing openFOAM code. Heat Mass Transf Und Stoffuebertragung 60:505–518. https://doi.org/10.1007/s00231-024-03449-0

    Article  Google Scholar 

  46. Gu J, Kawaji M, Futamata R (2004) Effects of gravity on the performance of pulsating heat pipes. J Thermophys Heat Transf 18:370–378. https://doi.org/10.2514/1.3067

    Article  Google Scholar 

  47. Gu J, Kawaji M, Futamata R (2005) Microgravity performance of micro pulsating heat pipes. Microgravity Sci Technol 16:181–185. https://doi.org/10.1007/bf02945972

    Article  Google Scholar 

  48. Mameli M, Araneo L, Filippeschi S, Marelli L, Testa R, Marengo M (2014) Thermal response of a closed loop pulsating heat pipe under a varying gravity force. Int J Therm Sci 80:11–22. https://doi.org/10.1016/j.ijthermalsci.2014.01.023

    Article  Google Scholar 

  49. Ayel V, Araneo L, Scalambra A, Mameli M, Romestant C, Piteau A et al (2015) Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force. Int J Therm Sci 96:23–34. https://doi.org/10.1016/j.ijthermalsci.2015.04.010

    Article  Google Scholar 

  50. Ayel V, Araneo L, Marzorati P, Romestant C, Bertin Y, Marengo M (2018) Visualization of Flow patterns in closed Loop flat plate pulsating Heat Pipe Acting as Hybrid Thermosyphons under various gravity levels. Heat Transf Eng 0:1–11. https://doi.org/10.1080/01457632.2018.1426244

    Article  Google Scholar 

  51. Abela M, Mameli M, Nikolayev V, Filippeschi S Experimental analysis and transient numerical simulation of a large diameter pulsating heat pipe in microgravity conditions. Int J Heat Mass Transf 2022;187. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122532

  52. Li J, Li Y, Experimental research on heat transfer characteristics of pusulating heat pipe (2008). Proc ASME Summer Heat Transf Conf HT 2008 2009;2:375–9. https://doi.org/10.1115/ht2008-56203

  53. Lin YH, Kang SW, Chen HL (2008) Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl Therm Eng 28:1312–1317. https://doi.org/10.1016/j.applthermaleng.2007.10.019

    Article  Google Scholar 

  54. Hu C, Jia L (2011) Experimental study on the start up performance of flat plate pulsating heat pipe. J Therm Sci 20:150–154. https://doi.org/10.1007/s11630-011-0450-0

    Article  Google Scholar 

  55. Gamit H, More V, Mukund B, Mehta HB (2015) Experimental investigations on pulsating Heat Pipe. Energy Procedia 75:3186–3191. https://doi.org/10.1016/j.egypro.2015.07.665

    Article  Google Scholar 

  56. Kim B, Li L, Kim J, Kim D (2017) A study on thermal performance of parallel connected pulsating heat pipe. Appl Therm Eng 126:1063–1068. https://doi.org/10.1016/j.applthermaleng.2017.05.191

    Article  Google Scholar 

  57. Rahman ML, Salsabil Z, Yasmin N, Nourin FN, Ali M (2016) Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios. AIP Conf Proc 1754. https://doi.org/10.1063/1.4958405

  58. Khandekar S, Groll M, Charoensawan P, Terdtoon P ¡¢ ¤ £ ¦ ¥ ¨). Pulsating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon. n.d

  59. Prasad TH, Kukutla PR, Rao PM, Reddy RM Experimental investigation on performance of pulsating heat pipe. ASME 2015 gas turbine India conf GTINDIA 2015 2015:1–8. https://doi.org/10.1115/GTINDIA2015-1362

  60. Rahman ML, Afrose T, Tahmina HK, Rinky RP, Ali M (2016) Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios. AIP Conf Proc 1754. https://doi.org/10.1063/1.4958406

  61. Markal B, Aksoy K (2021) The combined effects of filling ratio and inclination angle on thermal performance of a closed loop pulsating heat pipe. Heat Mass Transf Und Stoffuebertragung 57:751–763. https://doi.org/10.1007/s00231-020-02988-6

    Article  Google Scholar 

  62. Han H, Cui X, Zhu Y, Sun S (2014) A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP). Int J Therm Sci 82:138–147. https://doi.org/10.1016/j.ijthermalsci.2014.04.003

    Article  Google Scholar 

  63. Xu Y, Xue Y, Qi H, Cai W Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids. Int J Heat Mass Transf 2020;157. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119727

  64. Nine MJ, Tanshen MR, Munkhbayar B, Chung H, Jeong H (2014) Analysis of pressure fluctuations to evaluate thermal performance of oscillating heat pipe. Energy 70:135–142. https://doi.org/10.1016/j.energy.2014.03.098

    Article  Google Scholar 

  65. Wu Q, Xu R, Wang R, Li Y (2016) Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe. Int J Heat Mass Transf 100:892–898. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.008

    Article  Google Scholar 

  66. Kim H-T, Bang K-H (2014) Heat transfer enhancement of nanofluids in a pulsating heat pipe for heat dissipation of LED lighting. J Korean Soc Mar Eng 38:1200–1205. https://doi.org/10.5916/jkosme.2014.38.10.1200

    Article  Google Scholar 

  67. Xing M, Yu J, Wang R (2017) Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid. Int J Heat Mass Transf 112:81–88. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.112

    Article  Google Scholar 

  68. Kang SW, Wang YC, Liu YC, Lo HM (2017) Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe. Appl Therm Eng 126:1044–1050. https://doi.org/10.1016/j.applthermaleng.2017.02.051

    Article  Google Scholar 

  69. Groll M, Khandekar S (2004) State of the art on pulsating heat pipes. Proc Second Int Conf Microchannels Minichannels 33–44. https://doi.org/10.1115/icmm2004-2318

  70. Khedkar PSG, Rajale PM, Karmkar DK, Kumar D, Thakur R, ISSN (2018) Experimental Anal Closed Loop Pulsating Heat Pipe Using Different Working Fluids NO:2236–6124

    Google Scholar 

  71. Markal B, Varol R (2021) Investigation of the effects of miscible and immiscible binary fluids on thermal performance of pulsating heat pipes. Heat Mass Transf Und Stoffuebertragung 57:1527–1542. https://doi.org/10.1007/s00231-021-03050-9

    Article  Google Scholar 

  72. Ebrahimi Dehshali M, Nazari MA, Shafii MB (2018) Thermal performance of rotating closed-loop pulsating heat pipes: experimental investigation and semi-empirical correlation. Int J Therm Sci 123:14–26. https://doi.org/10.1016/j.ijthermalsci.2017.09.009

    Article  Google Scholar 

  73. Qian N, Marengo M, Jiang F, Chen X, Fu Y, Xu J (2024) Pulsating heat pipes filled with acetone and water under radial rotation conditions: heat transfer performance and semi-empirical correlation. Int Commun Heat Mass Transf 150. https://doi.org/10.1016/j.icheatmasstransfer.2023.107172

  74. Kammuang-Lue N, Sakulchangsatjatai P, On-Ai K, Terdtoon P (2017) Thermal resistance of rotating closed-loop pulsating heat pipes effects of working fluids and internal diameters. Therm Sci 21:2993–3000. https://doi.org/10.2298/tsci160827009k

    Article  Google Scholar 

  75. Czajkowski C, Nowak AI, Pietrowicz S (2020) Flower shape oscillating Heat Pipe – A novel type of oscillating heat pipe in a rotary system of coordinates – an experimental investigation. Appl Therm Eng 179. https://doi.org/10.1016/j.applthermaleng.2020.115702

  76. Czajkowski C, Nowak AI, Ochman A, Pietrowicz S (2022) Flower Shaped Oscillating Heat Pipe at the thermosyphon condition: performance at different rotational speeds, filling ratios, and heat supplies. Appl Therm Eng 212. https://doi.org/10.1016/j.applthermaleng.2022.118540

  77. Kammuang-lue N, Patanathabutr C, Sakulchangsatjatai P, Terdtoon P (2022) Thermal characteristics of rotating closed-loop pulsating heat pipe designed for rotating-type energy storage devices. Energy Rep 8:302–308. https://doi.org/10.1016/j.egyr.2022.10.206

    Article  Google Scholar 

  78. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB, Mahian O, Kalogirou S et al (2018) A review on pulsating heat pipes: from solar to cryogenic applications. Appl Energy 222:475–484. https://doi.org/10.1016/j.apenergy.2018.04.020

    Article  Google Scholar 

  79. Kargar Sharif Abad H, Ghiasi M, Jahangiri Mamouri S, Shafii MB (2013) A novel integrated solar desalination system with a pulsating heat pipe. Desalination 311:206–210. https://doi.org/10.1016/j.desal.2012.10.029

    Article  Google Scholar 

  80. Kargarsharifabad H, Mamouri SJ, Shafii MB, Rahni MT (2013) Experimental investigation of the effect of using closed-loop pulsating heat pipe on the performance of a flat plate solar collector. J Renew Sustain Energy 5. https://doi.org/10.1063/1.4780996

  81. Nguyen KB, Yoon SH, Choi JH (2012) Effect of working-fluid filling ratio and cooling-water flow rate on the performance of solar collector with closed-loop oscillating heat pipe. J Mech Sci Technol 26:251–258. https://doi.org/10.1007/s12206-011-1005-8

    Article  Google Scholar 

  82. Xu RJ, Zhang XH, Wang RX, Xu SH, Wang HS (2017) Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator. Energy Convers Manag 148:68–77. https://doi.org/10.1016/j.enconman.2017.04.045

    Article  Google Scholar 

  83. Arab M, Soltanieh M, Shafii MB (2012) Experimental investigation of extra-long pulsating heat pipe application in solar water heaters. Exp Therm Fluid Sci 42:6–15. https://doi.org/10.1016/j.expthermflusci.2012.03.006

    Article  Google Scholar 

  84. Charoensawan P, Wilaipon P, Seehawong N (2021) Flat plate Solar Water Heater with closed-Loop Oscillating Heat Pipes. Therm Sci 25:3607–3614. https://doi.org/10.2298/TSCI200713192C

    Article  Google Scholar 

  85. Aref L, Fallahzadeh R, Shabanian SR, Hosseinzadeh M A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector. Energy 2021;230. https://doi.org/10.1016/j.energy.2021.120751

  86. Zhao J, Jiang W, Rao Z (2018) Operational characteristics of oscillating heat pipe with long heat transport distance for solar energy application. Exp Therm Fluid Sci 98:137–145. https://doi.org/10.1016/j.expthermflusci.2018.05.026

    Article  Google Scholar 

  87. Chen Y, He Y, Zhu X (2020) Flower-type pulsating heat pipe for a solar collector. Int J Energy Res 44:7734–7745. https://doi.org/10.1002/er.5505

    Article  Google Scholar 

  88. Xu R, Chen J, Zhang X, Wang R, Xu S (2020) Heat Leakage Numerical Investigation of a compound parabolic concentrator-pulsating Heat Pipe Solar Collector. J Therm Sci 29. https://doi.org/10.1007/s11630-020-1293-3

  89. Su Z, Hu Y, Yan Y, Chen J, Wu X, Huang J (2024) Study on the multi-factors interaction of annular pulsating heat pipe based on response surface method and temperature curve analysis. Appl Therm Eng 236. https://doi.org/10.1016/j.applthermaleng.2023.121531

  90. Khalilmoghadam P, Rajabi-Ghahnavieh A, Shafii MB (2021) A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe. Renew Energy 163:2115–2127. https://doi.org/10.1016/j.renene.2020.10.073

    Article  Google Scholar 

  91. Kargaran M, Goshayeshi HR, Pourpasha H, Chaer I, Zeinali Heris S (2022) An extensive review on the latest developments of using oscillating heat pipe on cooling of photovoltaic thermal system. Therm Sci Eng Prog 36:101489. https://doi.org/10.1016/j.tsep.2022.101489

    Article  Google Scholar 

  92. Roslan MEBM, Hassim I (2019) Solar PV system with pulsating heat pipe cooling. Indones J Electr Eng Comput Sci 14:311–318. https://doi.org/10.11591/ijeecs.v14.i1.pp311-318

    Article  Google Scholar 

  93. Alizadeh H, Ghasempour R, Shafii MB, Ahmadi MH, Yan WM, Nazari MA (2018) Numerical simulation of PV cooling by using single turn pulsating heat pipe. Int J Heat Mass Transf 127:203–208. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.108

    Article  Google Scholar 

  94. Saha N, Das PK, Sharma PK (2014) Influence of process variables on the hydrodynamics and performance of a single loop pulsating heat pipe. Int J Heat Mass Transf 74:238–250. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.067

    Article  Google Scholar 

  95. Alizadeh H, Alhuyi Nazari M, Ghasempour R, Shafii MB, Akbarzadeh A (2020) Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe. Sol Energy 206:455–463. https://doi.org/10.1016/j.solener.2020.05.058

    Article  Google Scholar 

  96. Shadmehri M, Abedanzadeh A, Shafii MB, Ghasempour R, Mohsenzadeh M Development and economic evaluation of a CPVT system with PHP cooling; an experimental study. Energy Convers Manag 2023;283. https://doi.org/10.1016/j.enconman.2023.116939

  97. Rittidech S, Dangeton W, Soponronnarit S (2005) Closed-ended oscillating heat-pipe (CEOHP) air-preheater for energy thrift in a dryer. Appl Energy 81:198–208. https://doi.org/10.1016/j.apenergy.2004.06.003

    Article  Google Scholar 

  98. Khodami R, Abbas Nejad A, Ali Khabbaz MR (2016) Experimental investigation of energy and exergy efficiency of a pulsating heat pipe for chimney heat recovery. Sustain Energy Technol Assessments 16:11–17. https://doi.org/10.1016/j.seta.2016.04.002

    Article  Google Scholar 

  99. Mahajan G, Thompson SM, Cho H (2017) Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation. Energy Rep 3:46–53. https://doi.org/10.1016/j.egyr.2016.12.002

    Article  Google Scholar 

  100. Zabek D, Taylor J, Ayel V, Bertin Y, Romestant C, Bowen CR (2016) A novel pyroelectric generator utilising naturally driven temperature fluctuations from oscillating heat pipes for waste heat recovery and thermal energy harvesting. J Appl Phys 120. https://doi.org/10.1063/1.4958338

  101. Mahajan G, Cho H, Thompson SM, Rupp H, Muse K Oscillating heat pipes for waste heat recovery in HVAC systems. Proc ASME 2015 Int Mech Eng Congr Expo 2015;8B. https://doi.org/10.1115/IMECE2015-52720

  102. Winarta A, Putra N, Koestoer RA, Pamitran AS, Hakim II (2019) Heat transfer performance of oscillating heat pipe with ethanol and methanol working fluid with different inclinations for heat recovery application. J Adv Res Fluid Mech Therm Sci 57:148–157

    Google Scholar 

  103. Shoeibi S, Kargarsharifabad H, Khiadani M, Rashidi MM (2024) Techno-enviro-exergo-economic evaluation of hot water production by waste heat recovery using U-shaped pulsating heat pipe–an experimental study. Energy Sources Part Recover Util Environ Eff 46:3292–3308. https://doi.org/10.1080/15567036.2024.2318005

    Article  Google Scholar 

  104. Barrak AS, Saleh AAM, Naji ZH (2021) A Heat Recovery device using Oscillating Heat Pipe with circular and elliptical tubes. Int J Automot Mech Eng 18:8442–8453. https://doi.org/10.15282/ijame.18.1.2021.04.0639

    Article  Google Scholar 

  105. Mahajan G, Cho H, Smith A, Thompson SM (2020) Experimental analysis of atypically long Finned Oscillating Heat Pipe for Ventilation Waste Heat Recovery Application. J Therm Sci 29:667–675. https://doi.org/10.1007/s11630-019-1178-5

    Article  Google Scholar 

  106. Yang H, Wang J, Wang N, Yang F (2019) Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer. Energy Build 197:1–6. https://doi.org/10.1016/j.enbuild.2019.05.032

    Article  Google Scholar 

  107. Kabát J, Guzela S, Peciar P (2019) HVAC systems heat recovery with multi-layered oscillating heat pipes. Stroj Cas 69:51–60. https://doi.org/10.2478/scjme-2019-0004

    Article  Google Scholar 

  108. Barrak AS, Saleh AAM, Naji ZH Energy saving of Air Conditioning System by Oscillating Heat Pipe Heat Recovery using Binary Fluid. 4th Sci Int Conf Najaf SICN 2019 2019:178–183. https://doi.org/10.1109/SICN47020.2019.9019354

  109. Xu Y, Xue Y, Cai W, Qi H, Li Q (2023) Experimental study on performances of flat-plate pulsating heat pipes without and with thermoelectric generators for low-grade waste heat recovery. Appl Therm Eng 225. https://doi.org/10.1016/j.applthermaleng.2023.120156

  110. Wang W, Yang H, Zhang H, Xu T, Zhao F Pulsating heat pipe and thermo-electric generator jointly applied in renewable energy exploitation: Analytical and experimental investigations 2023;263.

  111. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. https://doi.org/10.1039/c1ee01598b

    Article  Google Scholar 

  112. Rao Z, Huo Y, Liu X (2014) Experimental study of an OHP-cooled thermal management system for electric vehicle power battery. Exp Therm Fluid Sci 57:20–26. https://doi.org/10.1016/j.expthermflusci.2014.03.017

    Article  Google Scholar 

  113. Wang Q, Rao Z, Huo Y, Wang S (2016) Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. Int J Therm Sci 102:9–16. https://doi.org/10.1016/j.ijthermalsci.2015.11.005

    Article  Google Scholar 

  114. Clement J, Wang X (2013) Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Appl Therm Eng 50:268–274. https://doi.org/10.1016/j.applthermaleng.2012.06.017

    Article  Google Scholar 

  115. Wei A, Qu J, Qiu H, Wang C, Cao G (2019) Heat transfer characteristics of plug-in oscillating heat pipe with binary-fluid mixtures for electric vehicle battery thermal management. Int J Heat Mass Transf 135:746–760. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.021

    Article  Google Scholar 

  116. Katoch SS, Eswaramoorthy M, A Detailed Review on Electric Vehicles Battery Thermal Management System (2020) IOP Conf Ser Mater Sci Eng 912. https://doi.org/10.1088/1757-899X/912/4/042005

  117. Chi RG, Chung WS, Rhi SH Thermal characteristics of an oscillating heat pipe cooling system for electric vehicle Li-ion batteries. Energies 2018;11. https://doi.org/10.3390/en11030655

  118. Chung WS, Lee JS, Rhi SH (2023) Thermal management system using pulsating heat pipe of cylindrical battery cell. J Mech Sci Technol 37:6711–6725. https://doi.org/10.1007/s12206-023-1139-5

    Article  Google Scholar 

  119. Hongkun L, Noor MM, Wenlin Y, Kadirgama K, Badruddin IA, Kamangar S (2024) Experimental research on heat transfer characteristics of a battery liquid-cooling system with ⊥-shaped oscillating heat pipe under pulsating flow. Int J Heat Mass Transf 224. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125363

  120. Chen M, Li J (2020) Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J Energy Storage 32:101715. https://doi.org/10.1016/j.est.2020.101715

    Article  Google Scholar 

  121. Qu J, Wang C, Li X, Wang H (2018) Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management. Appl Therm Eng 135:1–9. https://doi.org/10.1016/j.applthermaleng.2018.02.045

    Article  Google Scholar 

  122. Chen M, Li J (2021) Experimental study on heating performance of pure electric vehicle power battery under low temperature environment. Int J Heat Mass Transf 172. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121191

  123. Min C, Gao X, Li F, Wang K (2022) Thermal performance analyses of pulsating heat pipe for application in proton exchange member fuel cell. Energy Convers Manag 259:115566. https://doi.org/10.1016/j.enconman.2022.115566

    Article  Google Scholar 

  124. Shang F, Yang K, Yan T, Ju H, Liu C, Liu J Feasible analysis of pulsating Heat Pipe Applied to Proton Exchange Membrane Fuel Cell. 2022 IEEE 7th Int Conf Power Renew Energy, ICPRE 2022 2022:967–970. https://doi.org/10.1109/ICPRE55555.2022.9960299

  125. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86:82–85. https://doi.org/10.1109/JPROC.1998.658762

  126. Belhardj S, Mimouni S, Saidane A, Benzohra M (2003) Using microchannels to cool microprocessors: a transmission-line-matrix study. Microelectron J 34:247–253. https://doi.org/10.1016/S0026-2692(03)00004-1

    Article  Google Scholar 

  127. Sohel Murshed SM, Nieto de Castro CA (2017) A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sustain Energy Rev 78:821–833. https://doi.org/10.1016/j.rser.2017.04.112

    Article  Google Scholar 

  128. Maydanik YF, Dmitrin VI, Pastukhov VG (2009) Compact cooler for electronics on the basis of a pulsating heat pipe. Appl Therm Eng 29:3511–3517. https://doi.org/10.1016/j.applthermaleng.2009.06.005

    Article  Google Scholar 

  129. Miyazaki Y (2016) Ipack2005- cooling of notebook pc S by Flexible Oscillating Heat Pipes. 2:6

  130. Dang C, Jia L, Lu Q (2017) Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs. Appl Therm Eng 110:390–398. https://doi.org/10.1016/j.applthermaleng.2016.08.187

    Article  Google Scholar 

  131. Qu J, Wu HY, Wang Q (2012) Experimental investigation of silicon-based micro-pulsating heat pipe for cooling electronics. Nanoscale Microscale Thermophys Eng 16:37–49. https://doi.org/10.1080/15567265.2011.645999

    Article  Google Scholar 

  132. Lin Z, Wang S, Huo J, Hu Y, Chen J, Zhang W et al (2011) Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl Therm Eng 31:2221–2229. https://doi.org/10.1016/j.applthermaleng.2011.03.003

    Article  Google Scholar 

  133. Lv L, Li J, Zhou G (2017) A robust pulsating heat pipe cooler for integrated high power LED chips. Heat Mass Transf Und Stoffuebertragung 53:3305–3313. https://doi.org/10.1007/s00231-017-2050-3

    Article  Google Scholar 

  134. Shang F, Yang Q, Liu C, Fan S, Liu J (2020) An experimental study on heat transfer performance of a pulsating heat pipe radiator for CPU heat dissipation. E3S Web Conf 165:1–4. https://doi.org/10.1051/e3sconf/202016506035

    Article  Google Scholar 

  135. Xiahou G, Zhang J, Ma R, Liu Y (2019) Novel heat pipe radiator for vertical CPU cooling and its experimental study. Int J Heat Mass Transf 130:912–922. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.002

    Article  Google Scholar 

  136. Li C, Li J Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs. Therm Sci Eng Prog 2023;37. https://doi.org/10.1016/j.tsep.2022.101542

  137. Jang DS, Kim D, Hong SH, Kim Y (2019) Comparative thermal performance evaluation between ultrathin flat plate pulsating heat pipe and graphite sheet for mobile electronic devices at various operating conditions. Appl Therm Eng 149:1427–1434. https://doi.org/10.1016/j.applthermaleng.2018.12.146

    Article  Google Scholar 

  138. Dreiling R, Zimmermann S, Reibstirn M, Nguyen-Xuan T, Schreivogel P, di Mare F (2023) Experimental operating range evaluation of flat-plate pulsating heat pipes for high-heat flux automotive power electronics cooling. Appl Therm Eng 226:120338. https://doi.org/10.1016/j.applthermaleng.2023.120338

    Article  Google Scholar 

  139. Hota SK, Lee KL, Leitherer B, Elias G, Hoeschele G, Rokkam S (2023) Pulsating heat pipe and embedded heat pipe heat spreaders for modular electronics cooling. Case Stud Therm Eng 49:103256. https://doi.org/10.1016/j.csite.2023.103256

    Article  Google Scholar 

  140. Ling YZ, Zhang XS, Wang F, She XH (2020) Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling. Renew Energy 154:636–649. https://doi.org/10.1016/j.renene.2020.03.008

    Article  Google Scholar 

  141. Dai Y, Zhang R, Qin Z, Liu K, Liu C, Zhao J (2024) Research on the thermal performance and stability of three-dimensional array pulsating heat pipe for active/passive coupled thermal management application. Appl Therm Eng 245. https://doi.org/10.1016/j.applthermaleng.2024.122793

  142. Gao Y, Xu Z, Zhai E, Liang K, Zhao R, Li H et al (2023) Cooling pitch cabinets in wind turbines using a pulsating heat pipe: a case study. Case Stud Therm Eng 50:103461. https://doi.org/10.1016/j.csite.2023.103461

    Article  Google Scholar 

  143. Wu Z, Deng J, Su C, Luo C, Xia D (2014) Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process. Int J Refract Met Hard Mater 45:238–248. https://doi.org/10.1016/j.ijrmhm.2014.02.004

    Article  Google Scholar 

  144. Wu Z, Yang Y, Luo C (2016) Design, fabrication and dry cutting performance of pulsating heat pipe self-cooling tools. J Clean Prod 124:276–282. https://doi.org/10.1016/j.jclepro.2016.02.129

    Article  Google Scholar 

  145. Wu Z, Xing Y, Liu L, Huang P, Zhao G (2020) Design, fabrication and performance evaluation of pulsating heat pipe assisted tool holder. J Manuf Process 50:224–233. https://doi.org/10.1016/j.jmapro.2019.12.054

    Article  Google Scholar 

  146. Wu Z, Bao H, Xing Y, Liu L (2022) Dry cutting performance and heat transfer simulation of pulsating heat pipe self-cooling tool holder. J Manuf Process 83:129–142. https://doi.org/10.1016/j.jmapro.2022.08.055

    Article  Google Scholar 

  147. Qian N, Fu Y, Zhang Y, Chen J, Xu J (2019) Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel. Int J Heat Mass Transf 136:911–923. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.065

    Article  Google Scholar 

  148. Qian N, Jiang F, Marengo M, Chen J, Fu Y, Zhang J et al (2023) Start-up behavior of oscillating heat pipe in grinding wheel under axial-rotation conditions. Appl Therm Eng 219. https://doi.org/10.1016/j.applthermaleng.2022.119443

  149. Qian N, Fu Y, Marengo M, Xu J, Chen J, Jiang F Heat transport capacity of an axial-rotating single- loop oscillating heat pipe for abrasive-milling tools. Energies 2020;13. https://doi.org/10.3390/en13092145

  150. Qian N, Zhao Z, Fu Y, Xu J, Chen J (2020) Numerical analysis on temperature field of grinding ti-6al-4v titanium alloy by oscillating heat pipe grinding wheel. Met (Basel) 10. https://doi.org/10.3390/met10050670

  151. Qian N, Fu Y, Khan AM, Ding W, Jiang F, Zhang J et al (2022) Holistic sustainability assessment of novel oscillating-heat-pipe grinding-wheel in Earth-friendly abrasive machining. J Clean Prod 352:131486. https://doi.org/10.1016/j.jclepro.2022.131486

    Article  Google Scholar 

  152. Natsume K, Mito T, Yanagi N, Tamura H, Tamada T, Shikimachi K et al (2011) Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets. Cryogenics (Guildf) 51:309–314. https://doi.org/10.1016/j.cryogenics.2010.07.001

    Article  Google Scholar 

  153. Natsume K, Mito T, Yanagi N, Tamura H, Tamada T, Shikimachi K et al (2012) Development of cryogenic oscillating heat pipe as a new device for indirect/conduction cooled superconducting magnets. IEEE Trans Appl Supercond 22. https://doi.org/10.1109/TASC.2012.2185029

  154. Mito T, Natsume K, Yanagi N, Tamura H, Tamada T, Shikimachi K et al (2011) Achievement of high heat removal characteristics of superconducting magnets with imbedded oscillating heat pipes. IEEE Trans Appl Supercond 21:2470–2473. https://doi.org/10.1109/TASC.2010.2100356

    Article  Google Scholar 

  155. Liang Q, Li Y, Wang Q (2017) Experimental investigation on the performance of a neon cryogenic oscillating heat pipe. Cryogenics (Guildf) 84:7–12. https://doi.org/10.1016/j.cryogenics.2017.03.004

    Article  Google Scholar 

  156. Liang Q, Li Y, Wang Q (2018) Effects of filling ratio and condenser temperature on the thermal performance of a neon cryogenic oscillating heat pipe. Cryogenics (Guildf) 89:102–106. https://doi.org/10.1016/j.cryogenics.2017.12.002

    Article  Google Scholar 

  157. Liang Q, Fang C, Li Y, Liu J, Zhao W, Ai L (2022) Cooldown characteristics of a Neon Cryogenic pulsating Heat Pipe. J Low Temp Phys 207:278–294. https://doi.org/10.1007/s10909-022-02726-8

    Article  Google Scholar 

  158. Sun X, Li S, Jiao B, Gan Z, Pfotenhauer J, Wang B et al (2020) Experimental study on hydrogen pulsating heat pipes under different number of turns. Cryogenics (Guildf) 111:103174. https://doi.org/10.1016/j.cryogenics.2020.103174

    Article  Google Scholar 

  159. Li S, Bu Z, Fang T, Wang Y, Shen Y, Tao X et al (2023) Experimental study on the thermo-hydrodynamic characteristics of a nitrogen pulsating heat pipe. Int Commun Heat Mass Transf 146. https://doi.org/10.1016/j.icheatmasstransfer.2023.106920

  160. Sun X, Li S, Jiao B, Gan Z, Pfotenhauer J (2019) Experimental study on a hydrogen closed-loop pulsating heat pipe with two turns. Cryogenics (Guildf) 97:63–69. https://doi.org/10.1016/j.cryogenics.2018.10.010

    Article  Google Scholar 

  161. Li S, Sun X, Liu D, Jiao B, Pfotenhauer J, Gan Z et al (2022) Experimental study on a hydrogen pulsating heat pipe in different heating modes. Cryogenics (Guildf) 123:103440. https://doi.org/10.1016/j.cryogenics.2022.103440

    Article  Google Scholar 

  162. Pfotenhauer JM, Sun X, Berryhill A, Shoemaker CB (2021) The influence of aspect ratio on the thermal performance of a cryogenic pulsating heat pipe. Appl Therm Eng 196:117322. https://doi.org/10.1016/j.applthermaleng.2021.117322

    Article  Google Scholar 

  163. Li M, Li L, Xu D (2018) Effect of number of turns and configurations on the heat transfer performance of Helium cryogenic pulsating heat pipe. Cryogenics (Guildf) 96:159–165. https://doi.org/10.1016/j.cryogenics.2018.09.005

    Article  Google Scholar 

  164. Li M, Li L, Xu D (2019) Effect of filling ratio and orientation on the performance of a multiple turns Helium pulsating heat pipe. Cryogenics (Guildf) 100:62–68. https://doi.org/10.1016/j.cryogenics.2019.04.006

    Article  Google Scholar 

  165. Dixit T, Authelet G, Mailleret C, Gouit F, Stepanov V, Baudouy B High performance and working stability of an 18 W class neon pulsating heat pipe in vertical / horizontal orientation 2023;132.

  166. Sagar KR, Desai AB, Naik HB, Mehta HB (2021) Experimental investigations on two-turn cryogenic pulsating heat pipe with cylindrical shell-type condenser. Appl Therm Eng 196:117240. https://doi.org/10.1016/j.applthermaleng.2021.117240

    Article  Google Scholar 

  167. Sagar KR, Naik HB, Mehta HB (2021) Numerical study of liquid nitrogen based pulsating heat pipe for cooling superconductors. Int J Refrig 122:33–46. https://doi.org/10.1016/j.ijrefrig.2020.10.033

    Article  Google Scholar 

  168. Jafari Mosleh H, Bijarchi MA, Shafii MB (2019) Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers. Energy Convers Manag 181:653–662. https://doi.org/10.1016/j.enconman.2018.11.081

    Article  Google Scholar 

  169. Saw LH, Yew MC, Yew MK, Chong WT, Poon HM, Liew WS et al (2021) Development of the closed loop pulsating heat pipe cool roof system for residential buildings. Case Stud Therm Eng 28:101487. https://doi.org/10.1016/j.csite.2021.101487

    Article  Google Scholar 

  170. Aboutalebi M, Nikravan Moghaddam AM, Mohammadi N, Shafii MB (2013) Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int Commun Heat Mass Transf 45:137–145. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.008

    Article  Google Scholar 

  171. Liou TM, Chang SW, Cai WL, Lan IA (2019) Thermal fluid characteristics of pulsating heat pipe in radially rotating thin pad. Int J Heat Mass Transf 131:273–290. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.132

    Article  Google Scholar 

  172. Ling YZ, She XH, Zhang XS, Chen TT, Lin XR, Feng JK (2022) A PCM-based thermal management system combining three-dimensional pulsating heat pipe with forced-air cooling. Appl Therm Eng 213:118732. https://doi.org/10.1016/j.applthermaleng.2022.118732

    Article  Google Scholar 

  173. Xu X, Zhang X, Xiao Y (2022) Research on influence of high and low temperature heat sources for heat transfer characteristics of pulsating heat pipe cold storage device. Heat Mass Transf Und Stoffuebertragung 58:233–246. https://doi.org/10.1007/s00231-021-03108-8

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MSK and SA. The first draft of the manuscript was written by MSK and review by SA. Both the authors approved the final manuscript.

Corresponding author

Correspondence to Satyanand Abraham.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.S., Abraham, S. Applications of pulsating heat pipe (PHP) as an efficient heat transfer device: a review of recent developments. Heat Mass Transfer 60, 1285–1311 (2024). https://doi.org/10.1007/s00231-024-03491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-024-03491-y

Navigation