Skip to main content
Log in

Study of a novel solar-driven internally cooled liquid desiccant system for hot and humid climates

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The current paper experimentally studied the performance of solar-driven internally cooled liquid desiccant system for hot and humid climates using CaCl2 as a liquid desiccant. The system is designed to investigate the input conditions of the room by adjusting various air and solution variables. This internally cooled liquid desiccant system consists of the dehumidifier and regenerator in a single module and the regeneration of the solution is done by solar energy. The present study analyzes the effect of solution concentration, air mass flow rate and solution volume flow rate using different performance indices such as humidity reduction, moisture effectiveness, enthalpy effectiveness, and COP. The results demonstrate that the maximum moisture reduction of 4.2 g/kg d.a. is found at an airflow rate of 0.03195 kg/s, a solution volume flow rate of 12.5 LPM, and a solution concentration of 37%, while the maximum COP of 0.274 is obtained at an airflow rate of 0.0715 kg/s, a solution volume flow rate of 12.5 LPM, and a solution concentration of 37%. The maximum moisture and enthalpy effectiveness are obtained as 24.1% and 26.2%, respectively. The paper also presents the correlations for moisture and enthalpy effectiveness based on findings from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

A c :

Collector area, [m2]

COP :

Coefficient of performance

G :

Gravitational acceleration [m/s2]

H :

Specific enthalpy [kJ/kg]

I :

Incidence radiation [W/m2]

M :

Mass flow rate [kg/s]

Q u :

Useful gain energy [W]

T :

Temperature [°C]

U o :

Overall heat loss coefficient [W/m2 K]

\(\Delta\) W:

Moisture reduction [kg/kg d.a.]

\(\beta\) :

Tilt angle

Ρ:

Density (kg/m3)

\(\zeta\) :

Concentration [%]

\(\omega\) :

Specific humidity [kg/kg d.a.]

\({\varepsilon }_{m}\) :

Moisture effectiveness

\({\varepsilon }_{h}\) :

Enthalpy effectiveness

Φ:

Relative humidity [%]

\({\eta }_{c}\) :

Collector efficiency

A :

Air

Ea :

Evaporative air

Et :

Ethanol

Ew :

Evaporative cooling water

equ. :

Equilibrium

Hw :

Hot water

I :

Inlet

O :

Outlet

P :

Plate

R :

Regenerator

S :

Solution

W :

Water

AC :

Air conditioning

DBT :

Dry bulb temperature

d.a. :

Dry air

EC :

Evaporative cooling/cooler

HE :

Heat exchanger

HMT :

Heat and mass transfer

HVAC :

Heating, ventilation and air conditioning

ICD :

Internally cooled dehumidifier

LD :

Liquid desiccant

LDCS :

Liquid desiccant cooling system

LPM :

Litre per minute

TEG :

Triethylene glycol

References

  1. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12:2265–2300

    Article  CAS  Google Scholar 

  2. Kolokotsa D, Rovas D, Kosmatopoulos E, Kalaitzakis K (2011) A roadmap towards intelligent net zero-and positive-energy buildings. Sol Energy 85:3067–3084

    Article  ADS  Google Scholar 

  3. Cho H-J, Cheon S-Y, Jeong J-W (2019) Experimental analysis of dehumidification performance of counter and cross-flow liquid desiccant dehumidifiers. Appl Therm Eng 150:210–223

    Article  Google Scholar 

  4. Gommed K, Grossman G (2007) Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Sol Energy 81:131–138

    Article  ADS  CAS  Google Scholar 

  5. Yin Y, Qian J, Zhang X (2014) Recent advancements in liquid desiccant dehumidification technology. Renew Sustain Energy Rev 31:38–52. https://doi.org/10.1016/j.rser.2013.11.021

    Article  CAS  Google Scholar 

  6. Shukla DL, Modi KV (2017) A technical review on regeneration of liquid desiccant using solar energy. Renew Sustain Energy Rev 78:517–529. https://doi.org/10.1016/j.rser.2017.04.103

    Article  CAS  Google Scholar 

  7. Mei L, Dai YJ (2008) A technical review on use of liquid-desiccant dehumidification for air-conditioning application. Renew Sustain Energy Rev 12:662–689

    Article  CAS  Google Scholar 

  8. Lof GO (1955) Cooling with solar energy. Congr. Sol. Energy. Tucson Arizona, USA, pp 171–189

    Google Scholar 

  9. Sheridan NR (1961) Solar air conditioning. In: J. L E, Australia, pp 47–52

    Google Scholar 

  10. O¨berg V, Goswami DY (1998) Experimental study of the heat and mass transfer in a packed bed liquid desiccant air dehumidifier

    Book  Google Scholar 

  11. Longo GA, Gasparella A (2005) Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant. Int J Heat Mass Transf 48:5240–5254

    Article  CAS  Google Scholar 

  12. Zhang L, Hihara E, Matsuoka F, Dang C (2010) Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant. Int J Heat Mass Transf 53:2856–2863

    Article  CAS  Google Scholar 

  13. Khan AY (1998) Cooling and dehumidification performance analysis of internally-cooled liquid desiccant absorbers. Appl Therm Eng 18:265–281

    Article  CAS  Google Scholar 

  14. Alizadeh S (2008) Performance of a solar liquid desiccant air conditioner–An experimental and theoretical approach. Sol Energy 82:563–572

    Article  ADS  Google Scholar 

  15. Kumar R, Dhar PL, Jain S (2011) Development of new wire mesh packings for improving the performance of zero carryover spray tower. Energy 36:1362–1374. https://doi.org/10.1016/j.energy.2010.09.040

    Article  CAS  Google Scholar 

  16. Jain S, Dhar PL, Kaushik SC (2000) Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system. Appl Therm Eng 20:253–267

    Article  CAS  Google Scholar 

  17. Bouzenada S, McNevin C, Harrison S, Kaabi AN (2015) An experimental study onthe dehumidification performance of a low-flow falling-film liquid desiccant air-conditioner. Procedia Comput Sci 52:796–803

    Article  Google Scholar 

  18. Das A, Das RS, Das K (2022) Performance analysis of aqueous LiCl and CaCl2 based falling film dehumidifier with surface modification. Appl Therm Eng 200:117704

    Article  CAS  Google Scholar 

  19. Jain S, Bansal PK (2007) Performance analysis of liquid desiccant dehumidification systems. Int J Refrig 30:861–872. https://doi.org/10.1016/j.ijrefrig.2006.11.013

    Article  Google Scholar 

  20. Yin Y, Zhang X, Wang G, Luo L (2008) Experimental study on a new internally cooled/heated dehumidifier/regenerator of liquid desiccant systems. Int J Refrig 31:857–866. https://doi.org/10.1016/j.ijrefrig.2007.10.004

    Article  CAS  Google Scholar 

  21. Zhang T, Liu X, Jiang J et al (2013) Experimental analysis of an internally-cooled liquid desiccant dehumidifier. Build Environ 63:1–10

    Article  Google Scholar 

  22. Luo Y, Shao S, Xu H et al (2014) Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier. Appl Energy 133:127–134

    Article  ADS  Google Scholar 

  23. Bansal P, Jain S, Moon C (2011) Performance comparison of an adiabatic and an internally cooled structured packed-bed dehumidifier. Appl Therm Eng 31:14–19

    Article  CAS  Google Scholar 

  24. Kalpana, Subudhi S (2022) Developments in liquid desiccant dehumidification system integrated with evaporative cooling technology. Int J Energy Res 46:61–88. https://doi.org/10.1002/er.6713

    Article  Google Scholar 

  25. Saman WY, Alizadeh S (2000) An experimental study of a cross-flow type heat exchanger for dehumidification/cooling. In: Proc 38th Annual Conference of the Australian and New Zealand Solar Energy Society. pp 829–836

    Google Scholar 

  26. Cheng X, Peng D, Yin Y et al (2019) Experimental study and performance analysis on a new dehumidifier with outside evaporative cooling. Build Environ 148:200–211. https://doi.org/10.1016/j.buildenv.2018.11.006

    Article  Google Scholar 

  27. Peng D, Xu S, Yang H (2020) Heat and mass transfer characteristics and dehumidification performance improvement of an evaporatively-cooled liquid dehumidifier. Appl Therm Eng 178:115579

    Article  CAS  Google Scholar 

  28. Park JY, Kim BJ, Yoon SY et al (2019) Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier. Appl Energy 235:177–185. https://doi.org/10.1016/j.apenergy.2018.10.101

    Article  ADS  Google Scholar 

  29. Elmer T, Worall M, Wu S, Riffat S (2016) An experimental study of a novel integrated desiccant air conditioning system for building applications. Energy Build 111:434–445

    Article  Google Scholar 

  30. Sajesh M, Fekadu G, Kalpana Subudhi S (2021) Liquid desiccant air conditioning using single Storage solution tank, evaporative cooling, and marquise-shaped solar collector. J Energy Resour Technol 143:112001

  31. Olesen BW (2018) ASHRAE activities on ventilation for indoor air quality

  32. IMD Climatological Information of Roorkee for 1991–2020 (n.d.) https://cdsp.imdpune.gov.in/extremes_1991_2020/?stn=42840. Accessed 2 Aug 2023

  33. Duffie JA, Beckman WA (2013) Solar engineering of thermal processes. Wiley

    Book  Google Scholar 

  34. Bassuoni MM (2014) A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant. J Adv Res 5:175–182

    Article  CAS  PubMed  Google Scholar 

  35. Gad HE, Hamed AM, El-Sharkawy II (2001) Application of a solar desiccant/collector system for water recovery from atmospheric air. Renew Energy 22:541–556

    Article  CAS  Google Scholar 

  36. Kline SJ (1953) Describing uncertainty in single sample experiments. Mech Eng 75:3–8

    Google Scholar 

  37. Mitrovic J (2011) A simple explicit equation for the saturation temperature of humid air. Chem Eng Technol 34:1288–1294

    Article  CAS  Google Scholar 

  38. Wen T, Luo Y, Wang M, She X (2021) Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate. Renew Energy 167:841–852

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the Department of Science and Technology, India for providing the financial support through the Project No. DST/TDT/LCCT-04/2017.

Author information

Authors and Affiliations

Authors

Contributions

Kalpana: Conceptualization, Data curation, Investigation, Writing originaldraft preparation, Revision preparation. Sudhakar Subudhi: Resources, Reviewing and Editing, Supervision.

Corresponding author

Correspondence to Sudhakar Subudhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpana, Subudhi, S. Study of a novel solar-driven internally cooled liquid desiccant system for hot and humid climates. Heat Mass Transfer (2024). https://doi.org/10.1007/s00231-024-03462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00231-024-03462-3

Navigation