Skip to main content
Log in

Conjoint effect of turbulator and Al2O3 nanofluids on DPHEs thermal performance: Experimental study

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The energy crisis we are currently experiencing is merely the start of a very challenging and wide transformation. The sectors of power, coal, and natural gas encountered the biggest vibrations. To help with energy conservation, a compact and effective heat exchanger was made available that may be utilized to collect waste heat from power plants and industries. This study investigates the effects of combining passive techniques on the performance of a double-pipe heat exchanger equipped with a metal turbulator on the hot side and Al2O3 nanofluid on the cold side. The experiments used different volume fractions of Al2O3 nanofluid (Vol.%: 0.05, 0.1, and 0.15) as cold fluid with varying flow rates (500 ≤ Re ≤ 5000) in the annulus, as well as variously configured twisted tapes (Twist ratio: 20, 13.3, and 9.8) and frequently spaced helical screw tapes (Number of helices: 5, 7 and 9). The results show that the Nusselt number increases by 11.11% and the thermal performance factor increases by 1.116 times in case of twisted tapes with twist ratio 20 and 0.05% nanofluid combination, and by 24.93% and 1.269 times in case of frequently spaced helical screw tape with 9 number of helices and 0.15% nanofluid combination, respectively. Therefore, even at the expense of a small amount of pressure loss, 9 helices with 0.15% of Al2O3 nanofluid offered better performance in the combinations evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

d:

Diameter, m.

f:

Friction factor

Q:

Heat transfer

h:

Heat transfer coefficient, W m2 k1

L:

Length, m.

Nu :

Nusselt Number

Re:

Reynolds Number

ΔP:

Pressure Drop, bar

Cp :

Specific Heat, J kg1 K1

T:

Temperature, °C

K:

Thermal conductivity, W m1 k1

U:

Uncertainty

V:

Velocity, m s1

ρ:

Density, kg m3

μ:

Dynamic Viscosity, kg-m s1

ϕ:

Volume concentration

c:

Cold fluid

ci:

Cold fluid inlet

co:

Cold fluid outlet

f:

Fluid

fcold :

Cold side friction factor

fhot :

Hot side friction factor

h:

Hot fluid

hi:

Hot fluid inlet

ho:

Hot fluid outlet

ṁ:

Mass

nf:

Nanofluid

Nh :

Number of helices

P:

Particle

W:

Water

Al2O3 :

Aluminium Oxide

CFD:

Computational Fluid Dynamics

CTHE:

Concentric Tube Heat Exchanger

CuO:

Copper Oxide

DTHE:

Double Tube Heat Exchanger

DPHE:

Double Pipe Heat Exchanger

DR:

Diameter Ratio

Fe3O4 :

Ferrous Oxide

FSHST:

Frequently Spaced Helical Screw Tape

HT:

Heat Transfer

HTC:

Heat Transfer Coefficient

LMTD:

Logarithmic Mean Temperature Difference

PR:

Pitch Ratio

PVP:

Polyvinylpyrrolidone

SEM:

Scanning Electron Microscope

SiO2 :

Silicon Oxide

SS:

Stainless Steel

TPF:

Thermal Performance Factor

TR:

Twist Ratio

TT:

Twisted Tape

References

  1. Cengel YA (2002) Heat Transfer: A Practical Approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  2. Verma A, Kumar M, Patil AK (2018) Enhanced heat transfer and frictional losses in heat exchanger tube with modified helical coiled inserts. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 54(10):3137–3150. https://doi.org/10.1007/s00231-018-2347-x

    Article  ADS  CAS  Google Scholar 

  3. Kumar B, Srivastava GP, Kumar M, Patil AK (2018) A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts. Chem Eng Process 123:126–137. https://doi.org/10.1016/j.cep.2017.11.007

    Article  CAS  Google Scholar 

  4. Kumar M, Patil A, Jain S, Kumar B (2019) Study of Entropy Generation in Heat Exchanger Tube With Multiple V Cuts in Perforated Twisted Tape Insert. J Heat Transf 141:081801. https://doi.org/10.1115/1.4043769

    Article  CAS  Google Scholar 

  5. Eiamsa-ard S, Wongcharee K, Kunnarak K, Kumar M, Chuwattabakul V (2019) Heat transfer enhancement of TiO2-water nanofluid flow in dimpled tube with twisted tape insert. Heat Mass Transf 55(10):2987–3001. https://doi.org/10.1007/s00231-019-02621-1

    Article  ADS  CAS  Google Scholar 

  6. Nakhchi ME, Esfahani JA (2019) Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int J Therm Sci 138:75–83. https://doi.org/10.1016/j.ijthermalsci.2018.12.039

    Article  Google Scholar 

  7. Veera Kumar A, Arjunan TV, Seenivasan D, Venkatramanan R, Vijayan S, Matheswaran MM (2021) Influence of twisted tape inserts on energy and exergy performance of an evacuated Tube-based solar air collector. Sol Energy 225:892–904. https://doi.org/10.1016/j.solener.2021.07.074

    Article  ADS  Google Scholar 

  8. Promvonge P, Skullong S (2021) Heat transfer in a tube with combined V-winglet and twin counter-twisted tape. Case Stud Therm Eng 26:101033. https://doi.org/10.1016/j.csite.2021.101033

    Article  Google Scholar 

  9. Das L, Rubbi F, Habib K, Saidur R, Islam N, Saha BB, Aslfattahi N, Irshad K (2021) Hydrothermal performance improvement of an inserted double pipe heat exchanger with Ionanofluid. Case Stud Therm Eng 28:101533. https://doi.org/10.1016/j.csite.2021.101533

    Article  Google Scholar 

  10. Hayat MZ, Nandan G, Tiwari AK, Sharma SK, Shrivastava R, Singh AK (2021) Numerical study on heat transfer enhancement using twisted tape with trapezoidal ribs in an internal flow. Mater Today Proceed 46:5412–5419. https://doi.org/10.1016/j.matpr.2020.09.061

    Article  Google Scholar 

  11. Eiamsa-ard S, Changcharoen W, Beigzadeh R, Eiamsa-ard P, Wongcharee K, Chuwattanakul V (2021) Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification. Chem Eng Process 160:108304. https://doi.org/10.1016/j.cep.2021.108304

    Article  CAS  Google Scholar 

  12. Singh SK, Kacker R, Chaurasiya PK, Gautam SS (2022) Correlations on heat transfer rate and friction factor of a rectangular toothed v-cut twisted tape exhibiting the combined effects of primary and secondary vortex flows. Int Commun Heat Mass Transf 139:106503. https://doi.org/10.1016/j.icheatmasstransfer.2022.106503

    Article  Google Scholar 

  13. Ravi Kumar NT, Bhramara P, Addis BM, Sundar LS, Singh MK, Sousa ACM (2017a) Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int Commun Heat Mass Transf 81:155–163. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.019

    Article  CAS  Google Scholar 

  14. Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AAAA, Shabani GAS, Goodarzi M (2018) Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol 29(2):273–282. https://doi.org/10.1016/j.apt.2017.11.013

    Article  CAS  Google Scholar 

  15. Qi C, Luo T, Liu M, Fan F, Yan Y (2019) Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers Manag 197:111877. https://doi.org/10.1016/j.enconman.2019.111877

    Article  CAS  Google Scholar 

  16. Karimi A, Al-Rashed AAAA, Afrand M, Mahian O, Wongwises S, Shahsavar A (2019a) The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: Two-phase mixture model. Int J Mech Sci 156(December 2018):397–409. https://doi.org/10.1016/j.ijmecsci.2019.04.009

    Article  Google Scholar 

  17. Moradi A, Toghraie D, Isfahani AHM, Hosseinian A (2019) An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim 137(5):1797–1807. https://doi.org/10.1007/s10973-019-08076-0

    Article  CAS  Google Scholar 

  18. Ozdemir MB, Ergun ME (2019) Experimental and numerical investigations of thermal performance of AlO/water nanofluid for a combi boiler with double heat exchangers. Int J Numer Meth Heat Fluid Flow 29(4):1300–1321. https://doi.org/10.1108/HFF-05-2018-0189

    Article  Google Scholar 

  19. Zheng M, Han D, Asif F, Si Z (2020) Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat Mass Transf 56(4):1127–1140. https://doi.org/10.1007/s00231-019-02774-z

    Article  ADS  CAS  Google Scholar 

  20. Jalili B, Aghaee N, Jalili P, Domiri Ganji D (2022) Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Studies in Thermal Engineering 35:102086. https://doi.org/10.1016/j.csite.2022.102086

    Article  Google Scholar 

  21. Bahiraei M (2016) A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler-Lagrange approach. J Therm Anal Calorim 123(2):1591–1599. https://doi.org/10.1007/s10973-015-5031-0

    Article  CAS  Google Scholar 

  22. Bahiraei M, Heshmatian S, Keshavarzi M (2018) Multi-attribute optimization of a novel micro liquid block working with green graphene nanofluid regarding preferences of decision maker. Appl Therm Eng 143:11–21. https://doi.org/10.1016/j.applthermaleng.2018.07.074

    Article  CAS  Google Scholar 

  23. Bahiraei M, Nazari S, Moayedi H, Safarzadeh H (2020) Using neural network optimized by imperialist competition method and genetic algorithm to predict water productivity of a nanofluid-based solar still equipped with thermoelectric modules. Powder Technol 366:571–586. https://doi.org/10.1016/j.powtec.2020.02.055

    Article  CAS  Google Scholar 

  24. Bahiraei M, Nazari S, Safarzadeh H (2021) Modeling of energy efficiency for a solar still fitted with thermoelectric modules by ANFIS and PSO-enhanced neural network: A nanofluid application. Powder Technol 385:185–198. https://doi.org/10.1016/j.powtec.2021.03.001

    Article  CAS  Google Scholar 

  25. Hassaan AM (2022a) An investigation for the performance of the using of nanofluids in shell and tube heat exchanger. Int J Therm Sci 177:107569. https://doi.org/10.1016/j.ijthermalsci.2022.107569

    Article  CAS  Google Scholar 

  26. Hassaan AM (2023) Experimental investigation of the performance of the plate heat exchanger using (Multi-Walled Carbon Nanotubes–Al2O3/water) hybrid nanofluid. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 237(4):1310–1318. https://doi.org/10.1177/09544089221113977

    Article  CAS  Google Scholar 

  27. Durga Prasad PV, Gupta AVSSKS (2016) Experimental investigation on enhancement of heat transfer using Al2O3/water nanofluid in a u-tube with twisted tape inserts. Int Commun Heat Mass Transf 75:154–161. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.019

    Article  CAS  Google Scholar 

  28. Akyürek EF, Geliş K, Şahin B, Manay E (2018) Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Res Phys 9:376–389. https://doi.org/10.1016/j.rinp.2018.02.067

    Article  Google Scholar 

  29. Dalkılıç AS, Türk OA, Mercan H, Nakkaew S, Wongwises S (2019) An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad-channel twisted tape inserts. Int Commun Heat Mass Transf 107:1–13. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.013

    Article  CAS  Google Scholar 

  30. Karimi A, Al-Rashed AAAA, Afrand M, Mahian O, Wongwises S, Shahsavar A (2019b) The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: Two-phase mixture model. Int J Mech Sci 156:397–409. https://doi.org/10.1016/j.ijmecsci.2019.04.009

    Article  Google Scholar 

  31. Singh SK, Sarkar J (2020) Improving hydrothermal performance of hybrid nanofluid in double tube heat exchanger using tapered wire coil turbulator. Adv Powder Technol 31(5):2092–2100. https://doi.org/10.1016/j.apt.2020.03.002

    Article  CAS  Google Scholar 

  32. Gnanavel C, Saravanan R, Chandrasekaran M (2020) Heat transfer augmentation by nano-fluids and Spiral Spring insert in Double Tube Heat Exchanger – A numerical exploration. Mater Today Proceed 21:857–861. https://doi.org/10.1016/j.matpr.2019.07.602

    Article  CAS  Google Scholar 

  33. Singh SK, Sarkar J (2021a) Thermohydraulic behavior of concentric tube heat exchanger inserted with conical wire coil using mono/hybrid nanofluids. Int Commun Heat Mass Transf 122:105134. https://doi.org/10.1016/j.icheatmasstransfer.2021.105134

    Article  CAS  Google Scholar 

  34. Singh SK, Sarkar J (2021b) Experimental hydrothermal characteristics of concentric tube heat exchanger with V-cut twisted tape turbulator using PCM dispersed mono/hybrid nanofluids. Experimental Heat Transfer 34(5):421–442. https://doi.org/10.1080/08916152.2020.1772412

    Article  ADS  Google Scholar 

  35. Murthy HMS (2022) Heat transfer studies on double tube heat exchanger with combined effect of propeller insert and water-based GO and Al2O3 nanofluids. Sādhanā 47:143. https://doi.org/10.1007/s12046-022-01913-3

    Article  Google Scholar 

  36. Murthy HS, Hegde RN (2020) Investigations on heat transfer and friction factor characteristics of Graphene Oxide/water through A Heat Exchanger with Turbulator propeller insert. Heat and Mass Transfer 56:377–382. https://doi.org/10.1615/ihmtc-2019.640

    Article  Google Scholar 

  37. Sivashanmugam P (2012) Application of Nanofluids in Heat Transfer. In: Kazi SN (ed) An Overview of Heat Transfer Phenomena. IntechOpen. https://doi.org/10.5772/52496

    Chapter  Google Scholar 

  38. Yu W, Xie H (2012) A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J Nanomater 2012:435873. https://doi.org/10.1155/2012/435873

    Article  Google Scholar 

  39. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11(2):151–170. https://doi.org/10.1080/08916159808946559

    Article  ADS  CAS  Google Scholar 

  40. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Annalen Der Physik 324(2):289–306. https://doi.org/10.1002/andp.19063240204

    Article  ADS  Google Scholar 

  41. Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press

    Google Scholar 

  42. McClintock K (1953) Kline-mcclintock Method of Experimental Uncertainty

    Google Scholar 

  43. Kern DQ (2017) Process Heat Transfer. McGraw Hill Education

    Google Scholar 

  44. Shankara SM, Hegde RN (2022) Investigations on the effect of disturbed flow using differently configured turbulators and Alumina nanofluid as a coolant in a double tube heat exchanger. Experimental Heat Transfer 35(3):282–307. https://doi.org/10.1080/08916152.2020.1860159

    Article  CAS  Google Scholar 

  45. Mansoury D, Ilami Doshmanziari F, Rezaie S, Rashidi MM (2019) Effect of Al 2 O 3 /water nanofluid on performance of parallel flow heat exchangers: An experimental approach. J Therm Anal Calorim 135(1):625–643. https://doi.org/10.1007/s10973-018-7286-8

    Article  CAS  Google Scholar 

  46. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM (2017) Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim 127(3):2561–2575. https://doi.org/10.1007/s10973-016-5868-x

    Article  CAS  Google Scholar 

  47. Bhuiya MMK, Chowdhury MSU, Shahabuddin M, Saha M, Memon LA (2013) Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts. Int Commun Heat Mass Transf 48:124–132. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.024

    Article  Google Scholar 

  48. Murthy HMS, Hegde RN (2020) Investigations on thermal characteristics in a double pipe fitted with circular finned and frequently spaced helical twisted inserts and Graphene oxide nanofluid. Heat Mass Transf 56(9):2667–2679. https://doi.org/10.1007/s00231-020-02890-1

    Article  ADS  CAS  Google Scholar 

  49. Sadeghi O, Mohammed HA, Bakhtiari-Nejad M, Wahid MA (2016) Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts. Int Commun Heat Mass Transf 71:234–244. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.010

    Article  CAS  Google Scholar 

  50. Kamboj K, Singh G, Sharma R, Panchal D, Hira J (2017) Heat transfer augmentation in double pipe heat exchanger using mechanical turbulators. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 53(2):553–567. https://doi.org/10.1007/s00231-016-1838-x

    Article  ADS  CAS  Google Scholar 

  51. HM S, Hegde R (2023) Combined effect of helical screw-tape and water based GO/Al2O3 nanofluids on heat transfer enhancement in a double pipe heat exchanger. Springer, pp 219–224. https://doi.org/10.1007/978-981-19-7055-9_37

    Book  Google Scholar 

  52. Hazbehian M, Maddah H, Mohammadiun H, Alizadeh M (2016) Experimental investigation of heat transfer augmentation inside double pipe heat exchanger equipped with reduced width twisted tapes inserts using polymeric nanofluid. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 52(11):2515–2529. https://doi.org/10.1007/s00231-016-1764-y

    Article  ADS  CAS  Google Scholar 

  53. Saeedinia M, Akhavan-Behabadi MA, Nasr M (2012) Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux. Exp Thermal Fluid Sci 36:158–168. https://doi.org/10.1016/j.expthermflusci.2011.09.009

    Article  CAS  Google Scholar 

  54. Chandrasekar M, Suresh S, Chandra Bose A (2010) Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Exp Thermal Fluid Sci 34(2):122–130. https://doi.org/10.1016/j.expthermflusci.2009.10.001

    Article  CAS  Google Scholar 

  55. Venkitaraj KP, Suresh S, Alwin Mathew T, Bibin BS, Abraham J (2018) An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts. Heat and Mass Transfer/Waerme- Und Stoffuebertragung 54(3):813–829. https://doi.org/10.1007/s00231-017-2174-5

    Article  ADS  CAS  Google Scholar 

  56. Karmare SV, Tikekar AN (2007) Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int J Heat Mass Transf 50(21):4342–4351. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.065

    Article  CAS  Google Scholar 

  57. Sivashanmugam P, Suresh S (2006) Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts. Appl Therm Eng 26(16):1990–1997. https://doi.org/10.1016/j.applthermaleng.2006.01.008

    Article  CAS  Google Scholar 

  58. Duangthongsuk W, Wongwises S (2010) An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf 53(1–3):334–344. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.024

    Article  CAS  Google Scholar 

  59. Ravi Kumar NT, Bhramara P, Addis BM, Sundar LS, Singh MK, Sousa ACM (2017) Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int Commun Heat Mass Transf 81:155–163. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.019

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Vision Group on Science and Technology (VGST), State Government of Karnataka, India for the funding granted under the KFIST-L1 scheme (GRD No: 476).

Author information

Authors and Affiliations

Authors

Contributions

A. Conducted Investigations, prepared the figures, wrote the main manuscript text. B. Supervision C. Reviewed the manuscript.

Corresponding author

Correspondence to Shankara Murthy H M.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An investigation of dual augmentation methods for recovering waste heat from power plants and industry.

• In a DPHE, Al2O3 nanofluid functions as a coolant and a heat-recovery agent.

• DPHE fitted with meatal turbulators to reduce the boundary layer thickness and to alter the flow pattern.

• Combined augmentation techniques in DPHE increase the Nusselt number by 24.93% and the TPF by 1.269 times.

• Novel correlations are being developed that are helpful to the research community.

Appendix: Uncertainty calculations

Appendix: Uncertainty calculations

1.1 Reynolds number

$$\begin{aligned}\frac{{\text{U}}_{\text{Re}}}{\text{Re}}&={\left[{\left(\frac{{\mathrm{U}_\rho}}{{\rho}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{m}}}{\text{m}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{di}}}{{\text{d}}_{\text{i}}}\right)}^{2}+{\left(\frac{{\text{U}_\mu}}{\mu}\right)}^{2}\right]}^{^{1}/_{2}} \\&={\left[{\left({1}\times {10}^{-{5}}\right)}^{2}+{\left(\text{2.635}\times {10}^{-{3}}\right)}^{2}+{\left(0.01388\right)}^{2}+{\left(\text{0.01}\right)}^{2}\right]}^{^{1}/_{2}}\\&=\text{0.0173 }={ 1.73 \%}\end{aligned}$$
(23)

1.2 Heat transfer coefficient

$$\begin{aligned}\frac{{\text{U}}_{\text{ho}}}{{\text{h}}_{\text{o}}}&={\left[{\left(\frac{{\text{U}}_{\text{Qavg}}}{{\text{Q}}_{\text{avg}}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{A}}}{\text{A}}\right)}^{2}+{\left(\frac{{\text{U}}_{\Delta {\text{T}}}}{\Delta {\text{T}}}\right)}^{2}\right]}^{^1/_{2}}\\&={\left[{\left(\text{2.058}\times {10}^{-{6}}\right)}^{2}+{\left({0.01}^{2}\right)}^{2}+{\left(\text{1.449}\times {10}^{-3}\right)}^{2}\right]}^{^1/_{2}}\\&=\text{0.0101 }= 1.01 \%\end{aligned}$$
(24)

1.3 Nusselt number

$$\begin{aligned}\frac{{\text{U}}_{\text{Nu}}}{\text{Nu}}&={\left[{\left(\frac{{\text{U}}_{\text{h}}}{\text{h}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{di}}}{{\text{d}}_{\text{i}}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{K}}}{\text{K}}\right)}^{2}\right]}^{^1/_{2}}\\&={\left[{\left(7.2811\times {10}^{-5}\right)}^{2}+{\left({0.01}^{2}\right)}^{2}+{\left(0.0159\right)}^{2}\right]}^{^1/_{2}}\\&=\text{0.0188 }=1.88 \%\end{aligned}$$
(25)

1.4 Friction factor

$$\begin{aligned}\frac{{\text{U}}_{\text{fc}}}{{\text{f}}_{\text{c}}}&={\left[{\left(\frac{{\text{U}}_{\text{Re}}}{{\text{R}}_{\text{e}}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{di}}}{{\text{d}}_{\text{i}}}\right)}^{2}+{\left(\frac{{\text{U}}_{\Delta {\text{P}}}}{\Delta {\text{P}}}\right)}^{2}\right]}^{^1/_{2}}\\&={\left[{\left(3.46\times {10}^{-5}\right)}^{2}+{\left(0.01\right)}^{2}+{\left(1.1904\times {10}^{-2}\right)}^{2}\right]}^{^1/_{2}}\\&=0.0101=1.01\%\end{aligned}$$
(26)

1.5 Overall uncertainty

$$\begin{aligned}{\text{U}}_{\text{Overall}}&={\left[{\left(\frac{{\text{U}}_{\Delta\text{T}}}{\Delta \text{T}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{m}}}{\text{m}}\right)}^{2}+{\left(\frac{{\text{U}}_{\Delta\text{P}}}{\Delta\text{P}}\right)}^{2}+{\left(\frac{{\text{U}}_{\text{W}}}{\text{W}}\right)}^{2}\right]}^{1/_{2}}\\&=\Big[{\left(\text{1.449}\times {10}^{-3}\right)}^{2}+{\left(\text{2.635}\times {10}^{-{3}}\right)}^{2}\\&\quad\,+{\left(1.1904\times {10}^{-2}\right)}^{2}+{\left({1}\times {10}^{-5}\right)}^{2}\Big]^{1/_{2}}\\&=\text{0.}{0289} \, = 2.89 \%\end{aligned}$$
(27)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy H M, S., Hegde, R.N. & Rai, N. Conjoint effect of turbulator and Al2O3 nanofluids on DPHEs thermal performance: Experimental study. Heat Mass Transfer (2024). https://doi.org/10.1007/s00231-024-03460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00231-024-03460-5

Navigation