Skip to main content

Advertisement

Log in

Impact of cut diameter on thermohydraulic performance of DPHE: an experimental analysis using internet of things (IoT) approach

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this experimental study, we aimed to determine the combined effect of circular and semicircular cuts on twisted tape inserts in a double pipe heat exchanger operating in a turbulent regime with a Reynolds number ranging from 4000 to 18000. The insert used had circular cuts on the neutral axis and semicircular cuts on the edges. The diameter of the cuts was varied between 4 mm, 6 mm, and 8 mm for twisted tapes with twist ratios (x/b) of 4.5, 5.5, and 6.5. To reduce errors and increase automation, we employed the internet of things approach to measure additional input and output parameters, as well as cold and hot flow rates. This approach yielded more reliable results by minimizing human intervention. The findings of the present study indicate that the definite modifications in twisted tape led to a significant improvement in thermohydraulic performance metrics. Compared to other types of cuts, the circular and semicircular cut twisted tapes with x/b = 4.5 and φ = 8 mm achieved the most competitive enhancement in thermohydraulic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available on request.

Abbreviations

Q:

Heat Transfer Rate, W

Cp :

Specific heat capacity at constant pressure, J/kg-K

m:

Mass flow rate, kg/s

A:

Cross sectional area of tube, m2

y:

Twist ratio

f :

Friction factor

Nu:

Nusselt Number

Dh :

Hydraulic diameter of annulus, m

Re:

Reynolds Number

V, u:

Velocity (m/s)

h:

Convective heat transfer coefficient, W/m2-K

dh :

Hydraulic diameter of tube, m

L:

Length of tube

D:

Annulus diameter, m

k:

Thermal conductivity W/mK

Pr:

Prandtl Number

U:

Overall heat transfer coefficient, W/m2-K

T:

Temperature

ϑ :

Kinematic viscosity m2/s

φ :

Hole diameter, m

ρ :

Density kg/m3

η :

TPF

c:

Cold

o:

Out

s:

Surface Area

b:

Bulk mean

cross:

Cross sectional

DPHE:

Double pipe heat exchanger

CWC:

Centre wing cut

PEC:

Performance evaluation criterion

PT:

Perforated tape

P :

Differential pressure

PTT:

Plain twisted tape

CSCTT:

Circular and semi-circular cut twisted tape

CC:

Cross cut

TPF:

Thermal performance factor

WC:

Wing cut

CSC:

Centre square cut

TC:

Trapezoidal cut

SC:

Square cut

PC:

Peripherally cut

WN:

Wire Nails

RC:

Rectangular cut

VC:

V-cut

References

  1. Sridharan M, Devi R, Dharshini CS, Bhavadarani M (2019) IoT based performance monitoring and control in counter flow double pipe heat exchanger. Internet Things 5:34–40. https://doi.org/10.1016/j.iot.2018.11.002

    Article  Google Scholar 

  2. Mocrii D, Chen Y, Musilek P (2018) IoT-based smart homes: a review of system architecture, software, communications, privacy and security. Internet Things 1–2:81–98. https://doi.org/10.1016/j.iot.2018.08.009

    Article  Google Scholar 

  3. Čolaković A, Hadžialić M (2018) Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput Netw. https://doi.org/10.1016/j.comnet.2018.07.017

    Article  Google Scholar 

  4. Diwaker MK, Kumar A (2023) Case studies in thermal engineering thermohydraulic performance of dphe affected by triangular and semi-circular cut size on insert: IoT-based experimentation. Case Stud Therm Eng 43:102796. https://doi.org/10.1016/j.csite.2023.102796

    Article  Google Scholar 

  5. Sheikholeslami M, Ganji DD (2016) Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Energy Convers Manag 127:112–123. https://doi.org/10.1016/j.enconman.2016.08.090

    Article  Google Scholar 

  6. Mousavi SV, Sheikholeslami M, Gorjibandpy M, Barzegar Gerdroodbary M (2016) The Influence of magnetic field on heat transfer of magnetic nanofluid in a sinusoidal double pipe heat exchanger. Chem Eng Res Des 113:112–124. https://doi.org/10.1016/j.cherd.2016.07.009

    Article  Google Scholar 

  7. Sheikholeslami M, Jafaryar M, Said Z, Alsabery AI, Babazadeh H, Shafee A (2021) Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl Therm Eng 182:115935. https://doi.org/10.1016/j.applthermaleng.2020.115935

    Article  Google Scholar 

  8. Sheikholeslami M, Ganji DD, Gorji-Bandpy M (2016) Experimental and numerical analysis for effects of using conical ring on turbulent flow and heat transfer in a double pipe air to water heat exchanger. Appl Therm Eng 100:805–819. https://doi.org/10.1016/j.applthermaleng.2016.02.075

    Article  Google Scholar 

  9. Hussein MA, Hameed VM (2022) Experimental investigation on the effect of semi-circular perforated baffles with semi-circular fins on air-water double pipe heat exchanger. Arab J Sci Eng 47(5):6115–6124. https://doi.org/10.1007/s13369-021-05869-0

    Article  Google Scholar 

  10. Alam T, Kim MH (2018) A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renew Sustain Energy Rev 81:813–839. https://doi.org/10.1016/j.rser.2017.08.060

    Article  Google Scholar 

  11. Eiamsa-ard S, Thianpong C, Promvonge P (2006) Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements. Int Commun Heat Mass Transf 33(10):1225–1233. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.002

    Article  Google Scholar 

  12. Eiamsa-ard S, Promvonge P (2005) Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators. Sol Energy 78(4):483–494. https://doi.org/10.1016/j.solener.2004.09.021

    Article  Google Scholar 

  13. Promvonge P, Eiamsa-ard S (2007) Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int Commun Heat Mass Transf 34(7):849–859. https://doi.org/10.1016/j.icheatmasstransfer.2007.03.019

    Article  MATH  Google Scholar 

  14. Promvonge P, Eiamsa-ard S (2007) Heat transfer in a circular tube fitted with free-spacing snail entry and conical-nozzle turbulators. Int Commun Heat Mass Transf 34(7):838–848. https://doi.org/10.1016/j.icheatmasstransfer.2007.03.020

    Article  Google Scholar 

  15. Eiamsa-ard S, Pethkool S, Thianpong C, Promvonge P (2008) Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf 35(2):120–129. https://doi.org/10.1016/j.icheatmasstransfer.2007.07.003

    Article  Google Scholar 

  16. Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S (2009) Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf 36(7):698–704. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.026

    Article  Google Scholar 

  17. Eiamsa-ard S, Wongcharee K, Sripattanapipat S (2009) 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes. Int Commun Heat Mass Transf 36(9):947–955. https://doi.org/10.1016/j.icheatmasstransfer.2009.06.014

    Article  Google Scholar 

  18. Eiamsa-ard S, Promvonge P (2010) Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. Int J Heat Mass Transf 53(7–8):1364–1372. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.023

    Article  Google Scholar 

  19. Eiamsa-ard S, Seemawute P, Wongcharee K (2010) Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows. Exp Therm Fluid Sci 34(6):711–719. https://doi.org/10.1016/j.expthermflusci.2009.12.013

    Article  Google Scholar 

  20. Wongcharee K, Eiamsa-ard S (2012) Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf 39(2):251–257. https://doi.org/10.1016/j.icheatmasstransfer.2011.11.010

    Article  Google Scholar 

  21. Eiamsa-Ard S, Nuntadusit C, Promvonge P (2013) Effect of twin delta-winged twisted-tape on thermal performance of heat exchanger tube. Heat Transf Eng 34(15):1278–1288. https://doi.org/10.1080/01457632.2013.793112

    Article  Google Scholar 

  22. Pitak P, Petpices EA, Withada J, Smith EA (2016) Turbulent heat transfer and pressure loss in a square channel with discrete broken V-rib turbulators. J Hydrodyn 28(2):275–283. https://doi.org/10.1016/S1001-6058(16)60629-7

    Article  Google Scholar 

  23. Piriyarungrod N, Eiamsa-ard S, Thianpong C, Pimsarn M, Nanan K (2015) Heat transfer enhancement by tapered twisted tape inserts. Chem Eng Process Process Intensif 96:62–71. https://doi.org/10.1016/j.cep.2015.08.002

    Article  Google Scholar 

  24. Thianpong C, Yongsiri K, Nanan K, Eiamsa-ard S (2012) Thermal performance evaluation of heat exchangers fitted with twisted-ring turbulators. Int Commun Heat Mass Transf 39(6):861–868. https://doi.org/10.1016/j.icheatmasstransfer.2012.04.004

    Article  Google Scholar 

  25. Saysroy A, Eiamsa-ard S (2017) Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. Int J Therm Sci 121:55–74. https://doi.org/10.1016/j.ijthermalsci.2017.07.002

    Article  Google Scholar 

  26. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PSS (2009) Heat transfer and pressure drop characteristics of turbulent flow in a tube fitted with conical ring and twisted tape inserts. Int J Acad Res 1(1):123–128

    Google Scholar 

  27. Murugesan P, Mayilsamy K, Suresh S (2010) Heat transfer and friction factor studies in a circular tube fitted with twisted tape consisting of wire-nails. Chin J Chem Eng 18(6):1038–1042. https://doi.org/10.1016/S1004-9541(09)60166-X

    Article  Google Scholar 

  28. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PSS (2011) Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. Int Commun Heat Mass Transf 38(3):329–334. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.010

    Article  Google Scholar 

  29. Murugesan P, Mayilsamy K, Suresh S (2012) Heat transfer in a tube fitted with vertical and horizontal wing-cut twisted tapes. Exp Heat Transf 25(1):30–47. https://doi.org/10.1080/08916152.2011.559567

    Article  Google Scholar 

  30. Rathnakumar P, Mayilsamy K, Suresh S, Murugesan P (2014) Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids. J Nanosci Nanotechnol 14(3):2400–2407. https://doi.org/10.1166/jnn.2014.8505

    Article  Google Scholar 

  31. Eiamsa-ard S, Changcharoen W, Beigzadeh R, Eiamsa-ard P, Wongcharee K, Chuwattanakul V (2021) Influence of co/counter arrangements of multiple twisted-tape bundles on heat transfer intensification. Chem Eng Process Process Intensif 160:108304. https://doi.org/10.1016/j.cep.2021.108304

    Article  Google Scholar 

  32. Vashistha C, Patil AK, Kumar M (2016) Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl Therm Eng 96:117–129. https://doi.org/10.1016/j.applthermaleng.2015.11.077

    Article  Google Scholar 

  33. Murali G et al (2017) Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energy Convers Manag 128:e02030. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.032

    Article  Google Scholar 

  34. Abed AM et al (2018) Computational fluid dynamics (CFD) technique to study the effects of helical wire inserts on heat transfer and pressure drop in a double pipe heat exchanger. Appl Therm Eng 128(2):898–910. https://doi.org/10.1016/j.applthermaleng.2017.08.146

    Article  Google Scholar 

  35. Maddah H, Alizadeh M, Ghasemi N, Wan Alwi SR (2014) Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf 78:1042–1054. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.059

    Article  Google Scholar 

  36. Lei YG, Zhao CH, Song CF (2012) enhancement of turbulent flow heat transfer in a tube with modified twisted tapes. Chem Eng Technol 35(12):2133–2139. https://doi.org/10.1002/ceat.201200218

    Article  Google Scholar 

  37. Promvonge P, Koolnapadol N, Pimsarn M, Thianpong C (2014) Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl Therm Eng 62(1):285–292. https://doi.org/10.1016/j.applthermaleng.2013.09.031

    Article  Google Scholar 

  38. Sriromreun P, Thianpong C, Promvonge P (2012) Experimental and numerical study on heat transfer enhancement in a channel with Z-shaped baffles. Int Commun Heat Mass Transf 39(7):945–952. https://doi.org/10.1016/j.icheatmasstransfer.2012.05.016

    Article  Google Scholar 

  39. Shabanian SR, Rahimi M, Shahhosseini M, Alsairafi AA (2011) CFD and experimental studies on heat transfer enhancement in an air cooler equipped with different tube inserts. Int Commun Heat Mass Transf 38(3):383–390. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.015

    Article  Google Scholar 

  40. Murugesan P, Mayilsamy K, Suresh S (2011) Heat transfer in tubes fitted with trapezoidal-cut and plain twisted tape inserts. Chem Eng Commun 198(7):886–904. https://doi.org/10.1080/00986445.2011.545294

    Article  Google Scholar 

  41. Singh SK, Kumar A (2020) Advances in heat transfer enhancement using twisted tape inserts with and without nanofluid. Int J Mech Prod Eng Res Dev 10(1):157–174. https://doi.org/10.24247/ijmperdfeb202014

    Article  Google Scholar 

  42. Vaisi A, Moosavi R, Lashkari M, Mohsen Soltani M (2020) Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers. Chem Eng Process Process Intensif 154:108028. https://doi.org/10.1016/j.cep.2020.108028

    Article  Google Scholar 

  43. Zhang S, Lu L, Wang Q (2021) Thermal-hydraulic characteristic of short-length self-rotating twisted tapes in a circular tube. Int Commun Heat Mass Transf 122:105157. https://doi.org/10.1016/j.icheatmasstransfer.2021.105157

    Article  Google Scholar 

  44. Moffat RJ (1982) Contributions to the theory of single-sample uncertainty analysis. J Fluids Eng Trans ASME 104:250–258

    Article  Google Scholar 

  45. Kline SJ (2019) Professor of Mechanical Engineering, Stanford University, Stanford, Calif. 94305 Fellow ASME The https://fluidsengineering.asmedigitalcollection.asme.org on 06/29/2019. Terms of Use: http://www.asme.org/about-asme/terms-of-use

  46. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II–transition and turbulent flows. J Heat Transf 115(4):890–896. https://doi.org/10.1115/1.2911384

    Article  Google Scholar 

  47. Guo ZY, Tao WQ, Shah RK (2005) The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. Int J Heat Mass Transf 48(9):1797–1807. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.007

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research work conducted received support from the Department of Mechanical Engineering at MANIT, Bhopal in association with MoE, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Diwaker.

Ethics declarations

Conflict of interest

We hereby state that there are no identified conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwaker, M.K., Kumar, A. Impact of cut diameter on thermohydraulic performance of DPHE: an experimental analysis using internet of things (IoT) approach. Heat Mass Transfer 59, 2299–2310 (2023). https://doi.org/10.1007/s00231-023-03418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03418-z

Navigation