Skip to main content

Advertisement

Log in

A critical review on recent developments and applications of microchannels in the field of heat transfer and energy

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

There is a rapid movement towards miniaturization in the field of micro-electronics, medical, defence, and space applications as well as an increase in thermal load density in the field of solar power. This has resulted in the requirement for technologies to be developed which enable the rapid removal of high thermal load from the components for effective and safe operation. Microchannel cooling has been one of the areas which has been investigated to provide the solution as required. This paper aims to looks at the different types of microchannels being developed, review the performance of microchannels being developed with different working fluids, explore the various structures utilized of microchannels and explore the use of microchannel in the various applications with regards to field of thermal management. Finally, future needs are proposed for extending the research and enlarging its application fields. This review paper serves as guidance for researchers to design and predict the performance of microchannel heat sinks (MCHS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

Data availability

Data will be available on request.

References

  1. Fan Y, Winkel C, Kulkarni D, Tian W (2018) Analytical Design Methodology for Liquid Based Cooling Solution for High TDP CPUs. Proc 17th Intersoc Conf Therm Thermomechanical Phenom Electron Syst ITherm 582–6

  2. Huang S, Xiao S, Feng W (2009) On the energy efficiency of graphics processing units for scientific computing. IPDPS 2009 - Proc 2009 IEEE Int Parallel Distrib Process Symp

  3. Van Wyk JD, Lee FC (2013) On a future for power electronics. IEEE J Emerg Sel Top Power Electron. 1(2):59–72

    Article  Google Scholar 

  4. Gilmore N, Timchenko V, Menictas C (2017) Microchannel cooling of concentrator photovoltaics: A review. Renew Sustain Energy Rev 2018(90):1041–59

    Google Scholar 

  5. Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK (2017) Overview of micro-channel design for high heat flux application. Renew Sustain Energy Rev 2018(82):901–14

    Google Scholar 

  6. Başaran A, Yurddaş A (2021) Thermal modeling and designing of microchannel condenser for refrigeration applications operating with isobutane (R600a). Appl Therm Eng 198

  7. Ohadi M, Choo K, Dessiatoun S, Cetegen E (2013) Next Generation Microchannel Heat Exchangers. Springer Briefs Appl Sci Technol 1–111

  8. Palm B (2001) Heat transfer in microchannels. Microscale Thermophys Eng 5(3):155–75

    Article  Google Scholar 

  9. Deng D, Zeng L, Sun W (2021) A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf 175:121332

    Article  Google Scholar 

  10. Devahdhanush VS, Lei Y, Chen Z, Mudawar I (2021) Assessing advantages and disadvantages of macro- and micro-channel flow boiling for high-heat-flux thermal management using computational and theoretical/empirical methods. Int J Heat Mass Transf 169:120787

    Article  Google Scholar 

  11. Cheng P, Wang G, Quan X (2009) Recent work on boiling and condensation in microchannels. J Heat Transfer 131(4):1–15

    Article  Google Scholar 

  12. Kumar K, Kumar P (2021) Effect of groove depth on hydrothermal characteristics of the rectangular microchannel heat sink. Int J Therm Sci 161(October 2019):106730

  13. Law M, Lee PS (2015) A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels. Int J Heat Mass Transf 85:797–810

    Article  Google Scholar 

  14. Alam T, Lee PS, Yap CR, Jin L (2013) A comparative study of flow boiling heat transfer and pressure drop characteristics in microgap and microchannel heat sink and an evaluation of microgap heat sink for hotspot mitigation. Int J Heat Mass Transf 58(1–2):335–47

    Article  Google Scholar 

  15. Mathew J, Lee PS, Wu T, Yap CR (2020) Comparative Study of the Flow Boiling Performance of the Hybrid Microchannel-Microgap Heat Sink with Conventional Straight Microchannel and Microgap Heat Sinks. Int J Heat Mass Transf 156:119812

    Article  Google Scholar 

  16. Balasubramanian K, Lee PS, Jin LW, Chou SK, Teo CJ, Gao S (2011) Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels - A comparative study. Int J Therm Sci 50(12):2413–21

    Article  Google Scholar 

  17. Balasubramanian K, Jagirdar M, Lee PS, Teo CJ, Chou SK (2013) Experimental investigation of flow boiling heat transfer and instabilities in straight microchannels. Int J Heat Mass Transf 66:655–71

    Article  Google Scholar 

  18. Jasperson BA, Jeon Y, Turner KT, Pfefferkorn FE, Qu W (2010) Comparison of micro-pin-fin and microchannel heat sinks considering thermal-hydraulic performance and manufacturability. IEEE Trans Components Packag Technol 33(1):148–60

    Article  Google Scholar 

  19. Xia G, Ma D, Zhai Y, Li Y, Liu R, Du M (2015) Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure. Energy Convers Manag 105:848–57

    Article  Google Scholar 

  20. Miner MJ, Phelan PE, Odom BA, Ortiz CA (2013) Experimental measurements of critical heat flux in expanding microchannel arrays. J Heat Transf 135(10)

  21. Lee HJ, Liu DY, Yao SC (2010) Flow instability of evaporative micro-channels. Int J Heat Mass Transf 53(9–10):1740–9

  22. Xie G, Shen H, Wang CC (2015) Parametric study on thermal performance of microchannel heat sinks with internal vertical Y-shaped bifurcations. Int J Heat Mass Transf 90:948–58

    Article  Google Scholar 

  23. Mondal B, Pati S, Patowari PK (2021) Serpentine square wave microchannel fabrication with WEDM and soft lithography. Mater Today Proc 46(xxxx):8513–8518

  24. Khoshvaght-Aliabadi M, Hosseinirad E, Farsi M, Hormozi F (2021) Heat transfer and flow characteristics of novel patterns of chevron minichannel heat sink: An insight into thermal management of microelectronic devices. Int Commun Heat Mass Transf 122(February):105044

    Article  Google Scholar 

  25. Peng Y, Li Z, Li S, Cao B, Wu X, Zhao X (2021) The experimental study of the heat ransfer performance of a zigzag-serpentine microchannel heat sink. Int J Therm Sci 163(January):106831

    Article  Google Scholar 

  26. Xia GD, Jiang J, Wang J, Zhai YL, Ma DD (2015) Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks. Int J Heat Mass Transf 80:439–47

    Article  Google Scholar 

  27. Zhou J, Hatami M, Song D, Jing D (2016) Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. Int J Heat Mass Transf 103:715–24

    Article  Google Scholar 

  28. Ahmed MA, Shuaib NH, Yusoff MZ (2012) Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Mass Transf 55(21–22):5891–8

    Article  Google Scholar 

  29. Feng Z, Hu Z, Lan Y, Huang Z, Zhang J (2021) Effects of geometric parameters of circular pin-fins on fluid flow and heat transfer in an interrupted microchannel heat sink. Int J Therm Sci 165(February):106956

    Article  Google Scholar 

  30. Ferster KK, Kirsch KL, Thole KA (2018) Effects of geometry, spacing, and number of pin fins in additively manufactured microchannel pin fin arrays. J Turbomach 140(1):1–10

    Article  Google Scholar 

  31. Lan Y, Feng Z, Huang K, Zhang J, Hu Z (2021) Effects of truncated and offset pin-fins on hydrothermal performance and entropy generation in a rectangular microchannel heat sink with variable fluid properties. Int Commun Heat Mass Transf 124(April):105258

    Article  Google Scholar 

  32. Soleymani Z, Rahimi M, Gorzin M, Pahamli Y (2020) Performance analysis of hotspot using geometrical and operational parameters of a microchannel pin-fin hybrid heat sink. Int J Heat Mass Transf 159:120141

    Article  Google Scholar 

  33. Tullius JF, Tullius TK, Bayazitoglu Y (2012) Optimization of short micro pin fins in minichannels. Int J Heat Mass Transf 55(15–16):3921–32

    Article  Google Scholar 

  34. Alam MW, Bhattacharyya S, Souayeh B, Dey K, Hammami F, Rahimi-Gorji M et al (2020) CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study. Int Commun Heat Mass Transf 112:104455

    Article  Google Scholar 

  35. Bhandari P, Prajapati YK (2021) Thermal performance of open microchannel heat sink with variable pin fin height. Int J Therm Sci 159(August 2019):106609

  36. Jia Y, Xia G, Li Y, Ma D, Cai B (2018) Heat transfer and fluid flow characteristics of combined microchannel with cone-shaped micro pin fins. Int Commun Heat Mass Transf 92:78–89

    Article  Google Scholar 

  37. Mei D, Lou X, Qian M, Yao Z, Liang L, Chen Z (2014) Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number. Int J Heat Mass Transf 70:709–18

    Article  Google Scholar 

  38. Saravanan V, Umesh CK (2018) Numerical comparison for thermo-hydraulic performance of pin fin heat sink with micro channel pin fin heat sink. Sadhana - Acad Proc Eng Sci 43(7):1–15

    MathSciNet  Google Scholar 

  39. Lee YJ, Lee PS, Chou SK (2010) Enhanced microchannel heat sinks using oblique fins. Proc ASME InterPack Conf 2009 2:253–60

  40. Lee YJ, Lee PS, Chou SK (2010) Experimental investigation of silicon-based oblique finned microchannel heat sinks. 2010 14th Int Heat Transf Conf IHTC 14 6:283–291

  41. Lee YJ, Lee PS, Chou SK (2010) Experimental investigation of oblique finned microchannel heat sink+. In: 2010 12th IEEE Intersoc Conf Thermal Thermomechanic Phenomena Electron Sys 1–7

  42. Lee YJ, Lee PS, Chou SK (2012) Enhanced thermal transport in microchannel using oblique fins. J Heat Transfer 134(10):1–10

    Article  Google Scholar 

  43. Ansari D, Husain A, Kim KY (2010) Optimization and comparative study on oblique-and rectangular-fin microchannel heat sinks. J Thermophys Heat Transf 24(4):849–52

    Article  Google Scholar 

  44. Law M, Lee PS (2015) Comparative Study of Temperature and Pressure Instabilities during Flow Boiling in Straight-and 10°Oblique-Finned Microchannels. Energy Procedia 75:3105–12

    Article  Google Scholar 

  45. Law M, Kanargi OB, Lee PS (2016) Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels. Int J Heat Mass Transf 100:646–60

    Article  Google Scholar 

  46. Lee YJ, Lee PS, Chou SK (2013) Hotspot mitigating with obliquely finned microchannel heat sink-an experimental study. IEEE Trans Components, Packag Manuf Technol 3(8):1332–41

    Article  Google Scholar 

  47. Lee YJ, Singh PK, Lee PS (2015) Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study. Int J Heat Mass Transf 81:325–36

    Article  Google Scholar 

  48. Mou N, Lee YJ, Lee PS, Singh PK, Khan SA (2016) Investigations on the influence of flow migration on flow and heat transfer in oblique fin microchannel array. J Heat Transf 138(10):1–13

    Article  Google Scholar 

  49. Vinoth R, Kumar DS (2017) Channel cross section e ff ect on heat transfer performance of oblique fi nned microchannel heat sink. Int Commun Heat Mass Transf 87(August):270–6

    Article  Google Scholar 

  50. Vinoth R, Kumar DS (2018) Experimental investigation on heat transfer characteristics of an oblique finned microchannel heat sink with different channel cross sections. Heat Mass Transf und Stoffuebertragung 54(12):3809–17

    Article  Google Scholar 

  51. Vinoth R, Senthil Kumar D (2018) Numerical study of inlet cross-section effect on oblique finned microchannel heat sink. Therm Sci 22(6):2747–57

    Article  Google Scholar 

  52. Lan X, Xie G, Ji S, Tang Q, Li X, Wang X et al (2021) Experimental and numerical study on the temperature uniformity of a variable density alternating obliquely truncated microchannel. Int J Heat Mass Transf 176:121440

    Article  Google Scholar 

  53. Panse SS, Ekkad SV (2021) A numerical parametric study to enhance thermal hydraulic performance of a novel alternating offset oblique microchannel. Numer Heat Transf Part A Appl 79(7):489–512

    Article  Google Scholar 

  54. Far BR, Mohammadian SK, Khanna SK, Zhang Y (2015) International Journal of Heat and Mass Transfer Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry. HEAT MASS Transf 83:136–45

    Article  Google Scholar 

  55. Jiang PX, Fan MH, Si GS, Ren ZP (2001) Thermal-hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int J Heat Mass Transf 44(5):1039–51

    Article  Google Scholar 

  56. Javidi Sarafan M, Alizadeh R, Fattahi A, Valizadeh Ardalan M, Karimi N (2020) Heat and mass transfer and thermodynamic analysis of power-law fluid flow in a porous microchannel. J Therm Anal Calorim 141(5):2145–64

    Article  Google Scholar 

  57. Li F, Ma Q, Xin G, Zhang J, Wang X (2020) Heat transfer and flow characteristics of microchannels with solid and porous ribs. Appl Therm Eng 178:115639

    Article  Google Scholar 

  58. Dehghan M, Valipour MS, Saedodin S (2016) Microchannels enhanced by porous materials: Heat transfer enhancement or pressure drop increment? Energy Convers Manag 110:22–32

    Article  Google Scholar 

  59. Dehghan M, Valipour MS, Saedodin S, Mahmoudi Y (2016) Investigation of forced convection through entrance region of a porous-filled microchannel: An analytical study based on the scale analysis. Appl Therm Eng 99:446–54

    Article  Google Scholar 

  60. Haddad OM, Abuzaid MM, Al-Nimr MA (2005) Developing free-convection gas flow in a vertical open-ended microchannel filled with porous media. Numer Heat Transf Part A Appl 48(7):693–710

    Article  Google Scholar 

  61. Jia YT, Xia GD, Zong LX, Ma DD, Tang YX (2018) A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink. Int J Heat Mass Transf 127:818–33

    Article  Google Scholar 

  62. Mondal S, De S (2013) Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects. Electrophoresis. 34(5):668–73

    Article  Google Scholar 

  63. Zargartalebi M, Azaiez J (2019) Flow dynamics and heat transfer in partially porous microchannel heat sinks. J Fluid Mech 875:1035–57

    Article  MathSciNet  MATH  Google Scholar 

  64. Deng D, Tang Y, Liang D, He H, Yang S (2014) Flow boiling characteristics in porous heat sink with reentrant microchannels. Int J Heat Mass Transf 70:463–77

    Article  Google Scholar 

  65. Hung TC, Huang YX, Yan WM (2013) Thermal performance of porous microchannel heat sink: Effects of enlarging channel outlet. Int Commun Heat Mass Transf 48:86–92

    Article  Google Scholar 

  66. Lu G, Zhao J, Lin L, Wang XD, Yan WM (2017) A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins. Int J Heat Mass Transf 111:1071–8

    Article  Google Scholar 

  67. Hung TC, Huang YX, Yan WM (2015) Design of Porous-Microchannel Heat Sinks with Different Porous Configurations. Int J Mater Mech Manuf 4(2):89–94

    Google Scholar 

  68. Bar-Cohen A (2013) Gen-3 thermal management technology: Role of microchannels and nanostructures in an embedded cooling paradigm. J Nanotechnol Eng Med 4(2):1–3

    Article  Google Scholar 

  69. Ghosh DP, Sharma D, Mohanty D, Saha SK, Raj R (2019) Facile Fabrication of Nanostructured Microchannels for Flow Boiling Heat Transfer Enhancement. Heat Transf Eng 40(7):537–48

    Article  Google Scholar 

  70. Nagayama G, Sibuya S, Kawagoe M, Tsuruta T (2007) Heat transfer enhancement at nanostructured surface in parallel-plate microchannel. In Challenges of Power Engineering and Environment: Proceedings of the International Conference on Power Engineering 999-1006. Springer Berlin Heidelberg

  71. Alam T, Li W, Chang W, Yang F, Khan J, Li C (2018) A comparative study of flow boiling HFE-7100 in silicon nanowire and plainwall microchannels. Int J Heat Mass Transf 124:829–40

    Article  Google Scholar 

  72. Yang F, Li W, Dai X, Li C (2016) Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels. Appl Therm Eng 93:260–8

    Article  Google Scholar 

  73. Ding Y, Jia L, Zhang Y, An Z (2019) Investigation on R141b convective condensation in microchannel with low surface energy coating and hierarchical nanostructures surface. Appl Therm Eng 155(April):480–8

    Article  Google Scholar 

  74. Sharma D, Ghosh DP, Saha SK, Raj R (2019) Thermohydraulic characterization of flow boiling in a nanostructured microchannel heat sink with vapor venting manifold. Int J Heat Mass Transf 130:1249–59

    Article  Google Scholar 

  75. Hedau G, Dey P, Raj R, Saha SK (2020) Combined effect of inlet restrictor and nanostructure on two-phase flow performance of parallel microchannel heat sinks. Int J Therm Sci 153(March):106339

    Article  Google Scholar 

  76. Hendricks TJ, Krishnan S, Choi C, Chang CH, Paul B (2010) Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int J Heat Mass Transf 53(15–16):3357–65

    Article  Google Scholar 

  77. Gao L, Lyu J, Bai M, Li Y, Gao D, Shi L (2021) The microchannel combined hydrophobic nanostructure for enhancing boiling heat transfer. Appl Therm Eng 194(May):116962

    Article  Google Scholar 

  78. Yao Z, Lu YW, Kandlikar SG (2012) Pool boiling heat transfer enhancement through nanostructures on silicon microchannels. J Nanotechnol Eng Med 3(3):1–8

    Article  Google Scholar 

  79. Wei X, Joshi Y, Patterson MK (2007) Experimental and numerical study of a stacked microchannel heat sink for liquid cooling of microelectronic devices. J Heat Transfer 129(10):1432–44

    Article  Google Scholar 

  80. Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf 45(12):2549–65

    Article  Google Scholar 

  81. Chen C, Teng JT, Cheng CH, Jin S, Huang S, Liu C et al (2014) A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators. Int J Heat Mass Transf 69:203–14

    Article  Google Scholar 

  82. Dey P, Saha SK (2021) Fluid flow and heat transfer in microchannel with porous bio-inspired roughness. Int J Therm Sci 161(December 2020):106729

  83. Rimbault B, Nguyen CT, Galanis N (2014) Experimental investigation of CuO-water nanofluid flow and heat transfer inside a microchannel heat sink. Int J Therm Sci 84:275–92

    Article  Google Scholar 

  84. Burns MGSGW (1989) The Calibration of Thermocouples and Thermocouple Materials. U.S. Department of Commerce, National Institute of Standards and Technology 188

  85. Ho CJ, Wei LC, Li ZW (2010) An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng 30(2–3):96–103

    Article  Google Scholar 

  86. Hedau G, Dey P, Raj R, Saha SK (2020) Experimental and numerical investigation of the effect of number of parallel microchannels on flow boiling heat transfer. Int J Heat Mass Transf 158:119973

    Article  Google Scholar 

  87. Dede EM, Liu Y (2013) Experimental and numerical investigation of a multi-pass branching microchannel heat sink. Appl Therm Eng 55(1–2):51–60

    Article  Google Scholar 

  88. Kadam ST, Kumar R, Abiev R (2019) Performance augmentation of single-phase heat transfer in open-type microchannel heat sink. J Thermophys Heat Transf 33(2):416–24

    Article  Google Scholar 

  89. Markal B, Aydin O, Avci M (2019) Effect of hydraulic diameter on flow boiling in rectangular microchannels. Heat Mass Transf und Stoffuebertragung. 55(4):1033–44

    Article  Google Scholar 

  90. Yang D, Wang Y, Ding G, Jin Z, Zhao J, Wang G (2017) Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl Therm Eng 112:1547–56

    Article  Google Scholar 

  91. Peles Y, Koşar A, Mishra C, Kuo CJ, Schneider B (2005) Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transf 48(17):3615–27

    Article  MATH  Google Scholar 

  92. Derive closed-form analytical solutions to math and engineering problems [Internet]

  93. Pavuluri S, Maes J, Doster F (2018) Spontaneous imbibition in a microchannel: analytical solution and assessment of volume of fluid formulations. Microfluid Nanofluidics 22(8):0

  94. Sahu PK, Golia A, Sen AK (2012) Analytical, numerical and experimental investigations of mixing fluids in microchannel. Microsyst Technol 18(6):823–32

    Article  Google Scholar 

  95. Dey P, Raj D, Saha SK (2021) A Numerical Study on Condensation Heat Transfer Characteristics of R134a in Microchannel Under Varying Gravity Conditions. Microgravity Sci Technol 33(3)

  96. PD (2018) Introduction to Numerical Computing. J Appl Comput Math 07(04)

  97. Abiev RS (2013) Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels. Chem Eng J 227:66–79

    Article  Google Scholar 

  98. Bordbar A, Taassob A, Zarnaghsh A, Kamali R (2018) Slug flow in microchannels: Numerical simulation and applications. J Ind Eng Chem 62:26–39

    Article  Google Scholar 

  99. Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 26(17–18):2457–63

    Article  Google Scholar 

  100. Raja Kuppusamy N, Saidur R, Ghazali NNN, Mohammed HA (2014) Numerical study of thermal enhancement in micro channel heat sink with secondary flow. Int J Heat Mass Transf 78:216–23

    Article  Google Scholar 

  101. Kuppusamy NR, Mohammed HA, Lim CW (2013) Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids. Thermochim Acta 573:39–56

    Article  Google Scholar 

  102. Shen H, Xie G, Wang CC (2019) The numerical simulation with staggered alternation locations and multi-flow directions on the thermal performance of double-layer microchannel heat sinks. Appl Therm Eng 163(March):114332

    Article  Google Scholar 

  103. Leng C, Wang XD, Wang TH, Yan WM (2015) Optimization of thermal resistance and bottom wall temperature uniformity for double-layered microchannel heat sink. Energy Convers Manag 93:141–50

    Article  Google Scholar 

  104. Wu JM, Zhao JY, Tseng KJ (2014) Parametric study on the performance of double-layered microchannels heat sink. Energy Convers Manag 80:550–60

    Article  Google Scholar 

  105. Xia G, Zhai Y, Cui Z (2013) Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs. Appl Therm Eng 58(1–2):52–60

    Article  Google Scholar 

  106. Szczukiewicz S, Magnini M, Thome JR (2014) Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling. Int J Multiph Flow 59:84–101

    Article  Google Scholar 

  107. Yang M, Li MT, Hua YC, Wang W, Cao BY (2020) Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips. Int J Heat Mass Transf 160:120230

    Article  Google Scholar 

  108. Arie MA, Shooshtari AH, Dessiatoun SV, Al-Hajri E, Ohadi MM (2015) Numerical modeling and thermal optimization of a single-phase flow manifold-microchannel plate heat exchanger. Int J Heat Mass Transf 81:478–89

    Article  Google Scholar 

  109. Chauhan A, Sammakia B, Ghose K, Refai-Ahmed G, Agonafer D (2010) Hot spot mitigation using single-phase microchannel cooling for microprocessors. 2010 12th IEEE Intersoc Conf Therm Thermomechanical Phenom Electron Syst ITherm

  110. Dede EM (2014) Single-phase microchannel cold plate for hybrid vehicle electronics. Annu IEEE Semicond Therm Meas Manag Symp 118–24

  111. Lin Y, Luo Y, Li W, Cao Y, Tao Z, Shih TIP (2021) Single-phase and Two-phase Flow and Heat Transfer in Microchannel Heat Sink with Various Manifold Arrangements. Int J Heat Mass Transf 171:121118

    Article  Google Scholar 

  112. Saad K Oudah, Ruixian Fang, Amitav Tikadar, Karim Egab, Chen Li JAK (2017) Imece2017-71627 Transfer Performance in a Single-Phase Microchannel Heat Sink 1–8

  113. Sahar AM, Özdemir MR, Fayyadh EM, Wissink J, Mahmoud MM, Karayiannis TG (2016) Single phase flow pressure drop and heat transfer in rectangular metallic microchannels. Appl Therm Eng 93:1324–36

    Article  Google Scholar 

  114. Sahar AM, Wissink J, Mahmoud MM, Karayiannis TG, Ishak MSA (2017) Effect of hydraulic diameter and aspect ratio on single phase flow and heat transfer in a rectangular microchannel. Appl Therm Eng 115:793–814

    Article  Google Scholar 

  115. Sharma CS, Tiwari MK, Michel B, Poulikakos D (2013) Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid. Int J Heat Mass Transf 58(1–2):135–51

    Article  Google Scholar 

  116. Shkarah AJ, Sulaiman MY Bin, Ayob MRBH, Togun H (2013) A 3D numerical study of heat transfer in a single-phase micro-channel heat sink using graphene, aluminum and silicon as substrates. Int Commun Heat Mass Transf 48:108–15

  117. Zhang HY, Pinjala D, Wong TN, Toh KC, Joshi YK (2005) Single-phase liquid cooled microchannel heat sink for electronic packages. Appl Therm Eng 25(10):1472–87

    Article  Google Scholar 

  118. Radwan A, Ookawara S, Ahmed M (2018) Thermal management of concentrator photovoltaic systems using two-phase flow boiling in double-layer microchannel heat sinks. Appl Energy 2019(241):404–19

    Google Scholar 

  119. Pourfattah F, Arani AAA, Babaie MR, Nguyen HM, Asadi A (2019) On the thermal characteristics of a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation. Int J Heat Mass Transf 143:118518

    Article  Google Scholar 

  120. Chinnov EA, Ron’shin FV, Kabov OA (2016) Two-phase flow patterns in short horizontal rectangular microchannels. Int J Multiph Flow 80:57–68

  121. Cho SC, Wang Y (2014) Two-phase flow dynamics in a micro channel with heterogeneous surfaces. Int J Heat Mass Transf 71:349–60

    Article  Google Scholar 

  122. Wang Y, Sefiane K, Wang ZG, Harmand S (2014) Analysis of two-phase pressure drop fluctuations during micro-channel flow boiling. Int J Heat Mass Transf 70:353–62

    Article  Google Scholar 

  123. Keepaiboon C, Wongwises S (2015) Two-phase flow patterns and heat transfer characteristics of R134a refrigerant during flow boiling in a single rectangular micro-channel. Exp Therm Fluid Sci 66:36–45

    Article  Google Scholar 

  124. Thiangtham P, Keepaiboon C, Kiatpachai P, Asirvatham LG, Mahian O, Dalkilic AS et al (2016) An experimental study on two-phase flow patterns and heat transfer characteristics during boiling of R134a flowing through a multi-microchannel heat sink. Int J Heat Mass Transf 98:390–400

    Article  Google Scholar 

  125. Ali N, Teixeira JA, Addali A (2018) A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J Nanomater

  126. Sarafraz MM, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R (2019) Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transf 107(June):24–33

    Article  Google Scholar 

  127. Arani AAA, Akbari OA, Safaei MR, Marzban A, Alrashed AAAA, Ahmadi GR et al (2017) Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf 113:780–95

    Article  Google Scholar 

  128. Azizi Z, Alamdari A, Malayeri MR (2015) Convective heat transfer of Cu-water nanofluid in a cylindrical microchannel heat sink. Energy Convers Manag 101:515–24

    Article  Google Scholar 

  129. Bahiraei M, Jamshidmofid M, Goodarzi M (2019) Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq 273:88–98

    Article  Google Scholar 

  130. Hatami M, Ganji DD (2014) Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method. Energy Convers Manag 78:347–58

    Article  Google Scholar 

  131. Hung TC, Yan WM (2012) Enhancement of thermal performance in double-layered microchannel heat sink with nanofluids. Int J Heat Mass Transf 55(11–12):3225–38

    Article  Google Scholar 

  132. Al-Baghdadi MARS, Noor ZMH, Zeiny A, Burns A, Wen D (2020) CFD analysis of a nanofluid-based microchannel heat sink. Therm Sci Eng Prog 20(August):100685

    Article  Google Scholar 

  133. Tokit EM, Mohammed HA, Yusoff MZ (2012) Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids. Int Commun Heat Mass Transf 39(10):1595–604

    Article  Google Scholar 

  134. Vinoth R, Sachuthananthan B (2021) Flow and heat transfer behavior of hybrid nanofluid through microchannel with two different channels. Int Commun Heat Mass Transf 123:105194

    Article  Google Scholar 

  135. Marathe A, Zhang Y, Blanks G, Kumbhare N, Abdulla G, Rountree B (2017) An empirical survey of performance and energy efficiency variation on Intel processors. Proc E2SC 2017 5th Int Work Energy Effic Supercomput - Held conjunction with SC 2017 Int Conf High Perform Comput Networking, Storage Anal

  136. Liu S, Lin T, Luo X, Chen M, Jiang X (2006) A microjet array cooling system for thermal management of active radars and high-brightness LEDs. Proc - Electron Components Technol Conf 2006:1634–8

    Google Scholar 

  137. Browne MC, Norton B, McCormack SJ (2015) Phase change materials for photovoltaic thermal management. Renew Sustain Energy Rev 47:762–82

    Article  Google Scholar 

  138. Jiang L, Mikkelsen J, Koo JM, Huber D, Yao S, Zhang L et al (2002) Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Components Packag Technol 25(3):347–55

    Article  Google Scholar 

  139. Chen G, Jia M, Zhang S, Tang Y, Wan Z (2020) Pool boiling enhancement of novel interconnected microchannels with reentrant cavities for high-power electronics cooling. Int J Heat Mass Transf 156

  140. Silvério V, Cardoso S, Gaspar J, Freitas PP, Moreira ALN (2015) Design, fabrication and test of an integrated multi-microchannel heat sink for electronics cooling. Sens Actuators A Phys 235:14–27

  141. Bahiraei M, Heshmatian S (2017) Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene-silver nanoparticles. Energy Convers Manag 2018(168):357–70

    Google Scholar 

  142. Hou F, Zhang H, Huang D, Fan J, Liu F, Lin T et al (2020) Microchannel Thermal Management System with Two-Phase Flow for Power Electronics over 500 W/cm2Heat Dissipation. IEEE Trans Power Electron 35(10):10592–600

    Article  Google Scholar 

  143. Jaikumar A, Kandlikar SG (2015) Enhanced pool boiling for electronics cooling using porous fin tops on open microchannels with FC-87. Appl Therm Eng 91:426–33

    Article  Google Scholar 

  144. Jung KW, Kharangate CR, Lee H, Palko J, Zhou F, Asheghi M et al (2017) Microchannel cooling strategies for high heat flux (1 kW/cm2) power electronic applications. Proc 16th Intersoc Conf Therm Thermomechanical Phenom Electron Syst ITherm 98–104

  145. Laguna G, Azarkish H, Vilarrubí M, Ibañez M, Rosell J, Betancourt Y et al (2017) Microfluidic cell cooling system for electronics. THERMINIC 2017 - 23rd Int Work Therm Investig ICs Sys 1–4

  146. Sakanova A, Yin S, Zhao J, Wu JM, Leong KC (2014) Optimization and comparison of double-layer and double-side micro-channel heat sinks with nanofluid for power electronics cooling. Appl Therm Eng 65(1–2):124–34

    Article  Google Scholar 

  147. Sharma CS, Tiwari MK, Zimmermann S, Brunschwiler T, Schlottig G, Michel B et al (2015) Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl Energy 138:414–22

    Article  Google Scholar 

  148. Redo MA, Jeong J, Giannetti N, Enoki K, Yamaguchi S, Saito K et al (2018) Characterization of two-phase flow distribution in microchannel heat exchanger header for air-conditioning system. Exp Therm Fluid Sci 2019(106):183–93

    Google Scholar 

  149. Pan M, Wang H, Zhong Y, Hu M, Zhou X, Dong G et al (2019) Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities. Int J Heat Mass Transf 134:1199–208

    Article  Google Scholar 

  150. Hu Y, Yuill DP, Ebrahimifakhar A (2020) The effects of outdoor air-side fouling on frost growth and heat transfer characteristics of a microchannel heat exchanger: An experimental study. Int J Heat Mass Transf 151:119423

    Article  Google Scholar 

  151. Mahvi AJ, Garimella S (2019) Two-phase flow distribution of saturated refrigerants in microchannel heat exchanger headers. Int J Refrig 104:84–94

    Article  Google Scholar 

  152. Glazar V, Frankovic B, Trp A (2015) Experimental and numerical study of the compact heat exchanger with different microchannel shapes. Int J Refrig 51:144–53

    Article  Google Scholar 

  153. Kwon B, Maniscalco NI, Jacobi AM, King WP (2018) High power density air-cooled microchannel heat exchanger. Int J Heat Mass Transf 118:1276–83

    Article  Google Scholar 

  154. Li H, Hrnjak P (2015) An experimentally validated model for microchannel heat exchanger incorporating lubricant effect. Int J Refrig 59:259–68

    Article  Google Scholar 

  155. Mazaheri N, Bahiraei M, Razi S (2021) Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle. Powder Technol 383:484–97

    Article  Google Scholar 

  156. Mohammadian SK, Seyf HR, Zhang Y (2014) Performance augmentation and optimization of aluminum oxide-water nanofluid flow in a two-fluid microchannel heat exchanger. J Heat Transfer 136(2):1–9

    Article  Google Scholar 

  157. Shi HN, Ma T, Chu W xiao, Wang Q (2017) Optimization of inlet part of a microchannel ceramic heat exchanger using surrogate model coupled with genetic algorithm. Energy Convers Manag 149:988–996

  158. Yih J, Wang H (2020) Experimental characterization of thermal-hydraulic performance of a microchannel heat exchanger for waste heat recovery. Energy Convers Manag 204(September):112309

    Article  Google Scholar 

  159. Zhou F, Zhou W, Qiu Q, Yu W, Chu X (2018) Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger. Appl Therm Eng 137:616–31

    Article  Google Scholar 

  160. Zhou F, Zhou W, Zhang C, Qiu Q, Yuan D, Chu X (2020) Experimental and numerical studies on heat transfer enhancement of microchannel heat exchanger embedded with different shape micropillars. Appl Therm Eng 175(April):115296

    Article  Google Scholar 

  161. Wei A, Ren X, Lin S, Zhang X (2020) CFD analysis on flow and heat transfer mechanism of a microchannel Ω-shape heat pipe under zero gravity condition. Int J Heat Mass Transf 163:120448

    Article  Google Scholar 

  162. Diallo TMO, Yu M, Zhou J, Zhao X, Shittu S, Li G et al (2019) Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy 167:866–88

    Article  Google Scholar 

  163. Modjinou M, Ji J, Yuan W, Zhou F, Holliday S, Waqas A et al (2019) Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems. Energy 166:1249–66

    Article  Google Scholar 

  164. Li G, Zhang G, He W, Ji J, Lv S, Chen X et al (2016) Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array. ENERGY Convers Manag 112:191–8

    Article  Google Scholar 

  165. Li G, Ji J, Zhang G, He W, Chen X, Chen H (2016) Performance analysis on a novel micro-channel heat pipe evacuated tube solar collector-incorporated thermoelectric generation. Int J Energy Res. 40(15):2117–27

    Article  Google Scholar 

  166. Shittu S, Li G, Zhao X, Zhou J, Ma X, Akhlaghi YG (2020) Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Convers Manag 207(October 2019):112515

  167. Song Z, Ji J, Cai J, Li Z, Han K (2021) Performance analyses on a novel heat pump with a hybrid condenser combined with flat plate micro-channel heat pipe plus TEG and FPV evaporator. Energy Convers Manag 228(October):113606

    Article  Google Scholar 

  168. Ali AYM, Abo-Zahhad EM, Elqady HI, Rabie M, Elkady MF, El-Shazly AH (2020) Impact of microchannel heat sink configuration on the performance of high concentrator photovoltaic solar module. Energy Reports 6:260–5

    Article  Google Scholar 

  169. Abo-Zahhad EM, Ookawara S, Esmail MFC, El-Shazly AH, Elkady MF, Radwan A (2020) Thermal management of high concentrator solar cell using new designs of stepwise varying width microchannel cooling scheme. Appl Therm Eng 172(July 2019):115124

  170. Acharya N (2020) On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J Therm Anal Calorim 141(4):1425–42

    Article  Google Scholar 

  171. Ahlatli S, Mare T, Estelle P, Doner N (2016) Thermal performance of carbon nanotube nanofluids in solar microchannel collectors: An experimental study. Int J Technol 7(2):219–26

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Dey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kambli, A., Dey, P. A critical review on recent developments and applications of microchannels in the field of heat transfer and energy. Heat Mass Transfer 59, 1707–1747 (2023). https://doi.org/10.1007/s00231-023-03358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03358-8

Navigation