Skip to main content

Synthesis, characterization and application of SiO2 and CuO nanofluid in spray cooling of hot steel plate

Abstract

The current work uses SiO2 and CuO mono, mixed nanofluid to improve very-high mass-flux spray cooling performance. At first, the modified sol–gel method based SiO2 and wet-chemical method based CuO nanoparticles are prepared. The prepared nanoparticles' density, crystalline/amorphous nature, functional groups, compositions, morphology, and particle size are characterized. The SiO2 and CuO nanofluid are prepared using one-step and two-step methods, respectively. The nanofluid thermophysical properties, particle size distribution, and stability are determined. The heat transfer performance of applied nanofluid is assessed in terms of parameters cooling rate, heat flux, and heat transfer coefficient, which are estimated using inverse heat conduction analysis. The cooling performance improvement is observed with concentration enhancement for all nanofluids. However, for mono CuO and mixed SiO2-CuO nanofluid at their highest concentration, the cooling enhancement percent decreases compared to their second highest concentration. The highest cooling rate of 164 °C/s is observed for mixed nanofluid at the highest concentration. The average surface heat flux, critical heat flux, and average heat transfer coefficient improvement are maximum at 1.80 MW/m2, 2.36 MW/m2, and 2.67 kW/m2K, respectively, for mixed nanofluid highest concentration. Therefore, nanofluid inclusion leads to spray cooling performance improvement, with slight performance reduction after nanoparticle loading enhancement in some cases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Data availability

Data available on request from the authors.

Abbreviations

d:

Basal spacing

\(C_{p}\) :

Specific heat capacity of stainless steel

h:

Heat transfer coefficient

\(k_{s}\) :

Thermal conductivity of stainless steel

K:

Scherrer constant (= 0.9)

L:

Crystallite size

Q:

Surface heat flux

Rwp :

Weighted profile R-factor

Rexp :

Expected R-factor

Ts :

Surface temperature

Tc :

Coolant temperature

ρ s :

Density of stainless steel

β:

Full-width half maximum of diffraction peak (FWHM)

θ:

X-ray diffraction angle

λ:

X-ray wavelength

χ2 :

Goodness of fit

AHF:

Average heat flux

AHTC:

Average Heat Transfer Coefficient

AISI:

American Iron and Steel Institute

CHF:

Critical Heat flux

DIW:

De-ionized Water

DLS:

Dynamic Light scattering

EDS:

Energy dispersive spectroscopy

FESEM:

Field emission scanning electron microscope

FTIR:

Fourier-transform infrared spectroscopy

GoF:

Goodness of fit

HRM:

Hot Rolling Mill

ICDD:

International Centre for Diffraction Data

l-RHA:

Leached rice husk ash

PPM:

Parts Per Million

RH:

Rice Husk

RHA:

Rice Husk Ash

ROT:

Run-out Table

SDS:

Sodium dodecyl sulfate

SS:

Stainless Steel

TC:

Thermocouple

TCs:

Thermocouples

UFC:

Ultrafast cooling

u-RHA:

Unleached rice husk ash

XRD:

X-ray diffraction

XRF:

X-ray fluorescent

References

  1. Bhattacharya P, Samanta AN, Chakraborty S (2009) Spray evaporative cooling to achieve ultra fast cooling in runout table. Int J Therm Sci 48(9):1741–1747. https://doi.org/10.1016/j.ijthermalsci.2009.01.015

    Article  Google Scholar 

  2. Ravikumar SV, Jha JM, Mohapatra SS, Pal SK, Chakraborty S (2013) Influence of ultrafast cooling on microstructure and mechanical properties of steel. Steel Res Int. https://doi.org/10.1002/srin.201200346

    Article  Google Scholar 

  3. Cornet X, Herman J-C (2004) Method of Making a Multiphase Hot-Rolled Steel Strip. US 6821364B2. https://doi.org/10.1016/j.(73)

  4. Sun YK, Wu D (2009) Effect of Ultra-Fast Cooling on Microstructure of Large Section Bars of Bearing Steel. J Iron Steel Res Int 16(5):61-65,80. https://doi.org/10.1016/S1006-706X(10)60012-X

    Article  Google Scholar 

  5. Tian Y, Tang S, Wang B, Wang Z, Wang G (2012) Development and industrial application of ultra-fast cooling technology. Sci China Technol Sci 55(6):1566–1571. https://doi.org/10.1007/s11431-012-4744-6

    Article  Google Scholar 

  6. Ravikumar SV, Jha JM, Mohapatra SS, Sinha A, Pal SK, Chakraborty S (2013) Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate. Heat Mass Transf 49(10):1509–1522. https://doi.org/10.1007/s00231-013-1190-3

    Article  Google Scholar 

  7. Sengupta J, Thomas BG, Wells MA (Jan.2005) The use of water cooling during the continuous casting of steel and aluminum alloys. Metall Mater Trans A 36(1):187–204. https://doi.org/10.1007/s11661-005-0151-y

    Article  Google Scholar 

  8. Liu EY, Peng LG, Guo Y, Wang ZD, Zhang DH, Wang GD (2012) Advanced run-out table cooling technology based on ultra fast cooling and laminar cooling in hot strip mill. J Cent South Univ Technol 19:1341–1345. https://doi.org/10.1007/s11771-012-1147-6

    Article  Google Scholar 

  9. Mohapatra SS, Jha JM, Srinath K, Pal SK, Chakraborty S (2012) Enhancement of cooling rate for a hot steel plate using air-atomized spray with surfactant-added water. Exp Heat Transf 27(1):72–90. https://doi.org/10.1080/08916152.2012.719068

    Article  Google Scholar 

  10. Chakraborty S, Sengupta I, Sarkar I, Pal SK, Chakraborty S (2019) Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu-Zn-Al LDH nanofluid. Appl Clay Sci 168:43–55. https://doi.org/10.1016/j.clay.2018.10.018

    Article  Google Scholar 

  11. Sarkar I, Jha JM, Priyanka V, Pal SK, Chakraborty S (2019) Application of binary mixed surfactant additives in jet impingement cooling of a hot steel plate. Heat Mass Transf und Stoffuebertragung 55(12):3413–3425. https://doi.org/10.1007/s00231-019-02665-3

    Article  Google Scholar 

  12. Ravikumar SV, Jha JM, Haldar K, Pal SK, Chakraborty S (2015) Surfactant-Based Cu–Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface. J Heat Transfer 137:1–8. https://doi.org/10.1115/1.4029815

    Article  Google Scholar 

  13. Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S (2017) Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Therm Fluid Sci 89:295–303. https://doi.org/10.1016/j.expthermflusci.2017.08.023

    Article  Google Scholar 

  14. Mohapatra SS et al (2014) Ultra fast cooling of hot steel plate by air atomized spray with salt solution. Heat Mass Transf und Stoffuebertragung 50(5):587–601. https://doi.org/10.1007/s00231-013-1260-6

    Article  Google Scholar 

  15. Tiara AM, Chakraborty S, Sarkar I, Pal SK, Chakraborty S (2017) Synthesis and characterization of Zn-Al layered double hydroxide nanofluid and its application as a coolant in metal quenching. Appl Clay Sci 143:241–249. https://doi.org/10.1016/j.clay.2017.03.028

    Article  Google Scholar 

  16. Jha JM, Sarkar I, Chakraborty S, Pal SK, Chakraborty S (2017) Heat transfer from a hot moving steel plate by using Cu-Al layered double hydroxide nanofluid based air atomized spray. Exp Heat Transf 30(6):500–516. https://doi.org/10.1080/08916152.2017.1312638

    Article  Google Scholar 

  17. Tiara AM, Chakraborty S, Sarkar I, Pal SK, Chakraborty S (2016) Heat transfer in jet impingement on a hot steel surface using surfactant based Cu-Al layered double hydroxide nanofluid. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.094

    Article  Google Scholar 

  18. Sarkar I, Chakraborty S, Jha JM, Pal SK, Chakraborty S (2017) Ultrafast cooling of a hot steel plate using Cu-Al layered double hydroxide nanofluid jet. Int J Therm Sci 116:52–62. https://doi.org/10.1016/j.ijthermalsci.2017.02.009

    Article  Google Scholar 

  19. Tiara AM, Chakraborty S, Sarkar I, Pal SK, Chakraborty S (2017) Effect of alumina nanofluid jet on the enhancement of heat transfer from a steel plate. Heat Mass Transf 53:2187–2197. https://doi.org/10.1007/s00231-016-1955-6

    Article  Google Scholar 

  20. Chakraborty S, Sarkar I, Behera DK, Pal SK, Chakraborty S (2017) Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2nanofluid. Powder Technol 307:10–24. https://doi.org/10.1016/j.powtec.2016.11.016

    Article  Google Scholar 

  21. Jha JM, Sarkar I, Chakraborty S, Pal SK, Chakraborty S (2017) Heat transfer from a hot moving steel plate by using Cu-Al layered double hydroxide nanofluid based air atomized spray. Exp Heat Transf. https://doi.org/10.1080/08916152.2017.1312638

    Article  Google Scholar 

  22. Amiri M, Movahedirad S, Manteghi F (2016) Thermal conductivity of water and ethylene glycol nanofluids containing new modified surface SiO2-Cu nanoparticles: Experimental and modeling. Appl Therm Eng 108:48–53. https://doi.org/10.1016/j.applthermaleng.2016.07.091

    Article  Google Scholar 

  23. Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M (2019) An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. J Clean Prod 206:1089–1100. https://doi.org/10.1016/j.jclepro.2018.09.205

    Article  Google Scholar 

  24. Shin D, Banerjee D (2011) Enhanced specific heat of silica nanofluid. J Heat Transfer 133(2):1–4. https://doi.org/10.1115/1.4002600

    Article  Google Scholar 

  25. Golkhar A, Keshavarz P, Mowla D (2013) Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors. J Memb Sci 433:17–24. https://doi.org/10.1016/j.memsci.2013.01.022

    Article  Google Scholar 

  26. Zafar S (2021) Experimental and numerical study of Pool boiling and critical heat flux enhancement using water based silica Nanofluids. Heat Mass Transf 57:1593–1607

    Article  Google Scholar 

  27. Zhang Z et al (2022) Heat Transfer Enhancement Using Different SiO 2 Nanofluid Mixing Conditions on a Downward-facing Heating Surface Heat Transfer Enhancement Using Different SiO 2 Nanofluid Mixing Conditions on a Downward-facing Heating Surface. Nucl Technol 208:1605–1618. https://doi.org/10.1080/00295450.2022.2053927

    Article  Google Scholar 

  28. Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK (2004) Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surfaces A Physicochem Eng Asp 240:173–178. https://doi.org/10.1016/j.colsurfa.2004.03.021

    Article  Google Scholar 

  29. Adam F, Chew TS, Andas J (2011) A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59:580–583. https://doi.org/10.1007/s10971-011-2531-7

    Article  Google Scholar 

  30. Lumen D et al (2021) Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. Eur J Pharm Biopharm 158:254–265. https://doi.org/10.1016/j.ejpb.2020.11.022

    Article  Google Scholar 

  31. Hong R, Ding J, Zheng G (2004) Thermodynamic and particle-dynamic studies on synthesis of silica nanoparticles using microwave-induced plasma CVD. China Particuology 2(5):207–214. https://doi.org/10.1016/s1672-2515(07)60060-8

    Article  Google Scholar 

  32. Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) Nano-structured silica from rice husk. J. Non. Cryst. Solids 145(C):75–79. https://doi.org/10.1016/S0022-3093(05)80433-8

    Article  Google Scholar 

  33. Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290. https://doi.org/10.1016/j.jclepro.2016.11.142

    Article  Google Scholar 

  34. Chakraborty S, Sarkar I, Roshan A, Pal SK, Chakraborty S (2019) Spray cooling of hot steel plate using aqueous solution of surfactant and polymer. Therm Sci Eng Prog 10:217–231. https://doi.org/10.1016/j.tsep.2019.02.003

    Article  Google Scholar 

  35. Zhang Z, He W, Zheng J, Wang G, Ji J (2016) Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study. Nanoscale Res Lett. 11 (502). https://doi.org/10.1186/s11671-016-1726-9

  36. Wang XJ, Li X, Yang S (2009) Influence of pH and SDBS on the stability and thermal conductivity of nanofluids. Energy Fuels 23(5):2684–2689. https://doi.org/10.1021/ef800865a

    Article  Google Scholar 

  37. Qu J, Wu H (2011) Thermal performance comparison of oscillating heat pipes with SiO 2/water and Al2O3/water nanofluids. Int J Therm Sci 50(10):1954–1962. https://doi.org/10.1016/j.ijthermalsci.2011.04.004

    Article  Google Scholar 

  38. Ajeel RK et al (2019) Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. Int J Heat Mass Transf 145:118806. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118806

    Article  Google Scholar 

  39. Yan S, Wang F, Shi Z, Tian R (2017) Heat transfer property of SiO 2 / water nanofluid flow inside solar collector vacuum tubes. Appl Therm Eng 118:385–391. https://doi.org/10.1016/j.applthermaleng.2017.02.108

    Article  Google Scholar 

  40. Fazeli SA, Hosseini Hashemi SM, Zirakzadeh H, Ashjaee M (2012) Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct. 51(2):247–264. https://doi.org/10.1016/j.spmi.2011.11.017

    Article  Google Scholar 

  41. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Dharma Rao V (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci 51:103–111. https://doi.org/10.1016/j.expthermflusci.2013.07.006

    Article  Google Scholar 

  42. Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R (2016) Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng 102:1024–1036. https://doi.org/10.1016/j.applthermaleng.2016.04.051

    Article  Google Scholar 

  43. Sahooli M, Sabbaghi S, ShariatyNiassar M (2012) Preparation of CuO/Water Nanofluids Using Polyvinylpyrrolidone and a Survey on Its Stability and Thermal Conductivity. Int J Nanosci Nanotechnol 8(1):27–34

    Google Scholar 

  44. RohiniPriya K, Suganthi KS, Rajan KS (2012) Transport properties of ultra-low concentration CuO-water nanofluids containing non-spherical nanoparticles. Int. J. Heat Mass Transf. 55(17–18):4734–4743. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.035

    Article  Google Scholar 

  45. LeelaVinodhan V, Suganthi KS, Rajan KS (2016) Convective heat transfer performance of CuO-water nanofluids in U-shaped minitube: Potential for improved energy recovery. Energy Convers Manag 118:415–425. https://doi.org/10.1016/j.enconman.2016.04.017

    Article  Google Scholar 

  46. Barbés B, Páramo R, Blanco E, Casanova C (2014) Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim 115(2):1883–1891. https://doi.org/10.1007/s10973-013-3518-0

    Article  Google Scholar 

  47. Nallusamy S (2016) Thermal Conductivity Analysis and Characterization of Copper Oxide Nanofluids through Different Techniques. J Nano Res 40:105–112. https://doi.org/10.4028/www.scientific.net/JNanoR.40.105

    Article  Google Scholar 

  48. Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7(5 M):1–5. https://doi.org/10.1186/1556-276X-7-70

    Article  Google Scholar 

  49. Zhu H, Han D, Meng Z, Wu D, Zhang C (2011) Preparation and thermal conductivity of CuO nanofluid via a wet chemical method. Nanoscale Res Lett 6(1):2–7. https://doi.org/10.1186/1556-276X-6-181

    Article  Google Scholar 

  50. Pai KK, Nikhil KS, Anas M, Joseph S (2018) Study of Preparation Characterisation and Thermal Properties of CuO Nanofluids. Asian J Appl Sci Technol 2(2):1005–1012

    Google Scholar 

  51. Topnani N, Kushwaha S, Athar T (2010) Wet Synthesis of Copper Oxide Nanopowder. Int J Green Nanotechnol Mater Sci Eng 1(2):M67–M73. https://doi.org/10.1080/19430840903430220

    Article  Google Scholar 

  52. Yalçın G, Öztuna S, Dalkılıç AS, Wongwises S (2022) Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids. J Therm Anal Calorim 147(15):8243–8259. https://doi.org/10.1007/s10973-021-11076-8

    Article  Google Scholar 

  53. Liu MS, Lin MCC, Wang CC (2011) Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett 6(1):297. https://doi.org/10.1186/1556-276X-6-297

    Article  Google Scholar 

  54. Astanina MS, Abu-Nada E, Sheremet MA (2018) Combined effects of thermophoresis, Brownian motion, and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity. J Heat Transfer 140(8):1–12. https://doi.org/10.1115/1.4039217

    Article  Google Scholar 

  55. Hwang YJ et al (2006) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 6(6):1068–1071. https://doi.org/10.1016/j.cap.2005.07.021

    Article  Google Scholar 

  56. Cookson D, Routbort ÆJ (2008) Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. J Nanoparticle Res 10:1109–1114. https://doi.org/10.1007/s11051-007-9347-y

    Article  Google Scholar 

  57. Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650. https://doi.org/10.1021/jp065926t

    Article  Google Scholar 

  58. Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass Transf 39(5):665–669. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012

    Article  Google Scholar 

  59. Pavithra KS, Fasiulla, Yashoda MP, Prasannakumar S (2020) Synthesis, characterisation and thermal conductivity of CuO - water based nanofluids with different dispersants. Part Sci Technol 38(5):559–567. https://doi.org/10.1080/02726351.2019.1574941

    Article  Google Scholar 

  60. Kujawska A et al (2021) Impact of Silica Nanofluid Deposition on Thermosyphon Performance Impact of Silica Nanofluid Deposition on Thermosyphon Performance. Heat Transf Eng 42(19–20):1702–1719. https://doi.org/10.1080/01457632.2020.1818413

    Article  Google Scholar 

  61. Rostamian F, Etesami N (2018) Pool boiling characteristics of silica/water nanofluid and variation of heater surface roughness in domain of time. Int Commun Heat Mass Transf 95(May):98–105. https://doi.org/10.1016/j.icheatmasstransfer.2018.04.003

    Article  Google Scholar 

  62. Mukherjee S, Ali N, Aljuwayhel NF, Mishra PC, Sen S, Chaudhuri P (2021) Pool Boiling Amelioration by Aqueous Dispersion of Silica Nanoparticles. Nanomaterials 11(2138):1–27

    Google Scholar 

  63. Tian Z, Etedali S, Afrand M, Abdollahi A, Goodarzi M (2019) Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nanofluid. Powder Technol 356:391–402. https://doi.org/10.1016/j.powtec.2019.08.049

    Article  Google Scholar 

  64. Hegde RN, Rao SS, Reddy RP (2011) Experimental study on CuO nanoparticles in distilled water and its effect on heat transfer on a vertical surface. J Mech Sci Technol 25(11):2927–2934. https://doi.org/10.1007/s12206-011-0719-y

    Article  Google Scholar 

  65. ZeinaliHeris S (2011) Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol-water nanofluids. Int Commun Heat Mass Transf 38(10):1470–1473. https://doi.org/10.1016/j.icheatmasstransfer.2011.08.004

    Article  Google Scholar 

  66. Sarafraz MM, Hormozi F, Kamalgharibi M (2014) Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transf und Stoffuebertragung 50(9):1237–1249. https://doi.org/10.1007/s00231-014-1336-y

    Article  Google Scholar 

  67. Li Z, Sarafraz MM, Mazinani A, Hayat T, Alsulami H, Goodarzi M (2020) Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces. Int J Heat Mass Transf 156:119780. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119780

    Article  Google Scholar 

  68. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: Recent research, development and applications. Renew Sustain Energy Rev 43:164–177. https://doi.org/10.1016/j.rser.2014.11.023

    Article  Google Scholar 

  69. RangaBabu JA, Kumar KK, Srinivasa Rao S (2017) State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev 77(September 2016):551–565. https://doi.org/10.1016/j.rser.2017.04.040

    Article  Google Scholar 

  70. Pramuanjaroenkij A, Tongkratoke A, Kakaç S (2018) Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement. J Eng Phys Thermophys 91(1):104–114. https://doi.org/10.1007/s10891-018-1724-0

    Article  Google Scholar 

  71. Hamid KA, Azmi WH, Nabil MF, Mamat R (Oct.2017) Improved thermal conductivity of TiO 2 –SiO 2 hybrid nanofluid in ethylene glycol and water mixture. IOP Conf Ser Mater Sci Eng 257(012067):1–7. https://doi.org/10.1088/1757-899X/257/1/012067

    Article  Google Scholar 

  72. Dalkılıç AS et al (2018) Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int Commun Heat Mass Transf 99(November):18–25. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.002

    Article  Google Scholar 

  73. Charab AA, Movahedirad S, Norouzbeigi R (2017) Thermal conductivity of Al2O3 + TiO2/water nanofluid: Model development and experimental validation. Appl Therm Eng 119:42–51. https://doi.org/10.1016/j.applthermaleng.2017.03.059

    Article  Google Scholar 

  74. Yıldız Ç, Arıcı M, Karabay H (2019) Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. Int J Heat Mass Transf 140:598–605. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.028

    Article  Google Scholar 

  75. Kumar RS, Chaturvedi KR, Iglauer S, Trivedi J, Sharma T (2020) Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment. J Pet Sci Eng 195(December 2019):107634. https://doi.org/10.1016/j.petrol.2020.107634

    Article  Google Scholar 

  76. Kumar P, Chakraborty S (2022) Rice Husk-Derived Silica Nanoparticles Using Optimized Titrant Concentration for the One-Step Nanofluid Preparation, in Sustainable Chemical, Mineral and Material Processing. 303–318. https://doi.org/10.1007/978-981-19-7264-5_24

  77. Bakar RA, Yahya R, Gan SN (2016) Production of High Purity Amorphous Silica from Rice Husk. Procedia Chem 19:189–195. https://doi.org/10.1016/j.proche.2016.03.092

    Article  Google Scholar 

  78. Tran TH, Nguyen VT (2016) Phase transition of Cu2O to CuO nanocrystals by selective laser heating. Mater Sci Semicond Process 46:6–9. https://doi.org/10.1016/j.mssp.2016.01.021

    Article  Google Scholar 

  79. Goyat MS, Ray S, Ghosh PK (2011) Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos Part A Appl Sci Manuf 42(10):1421–1431. https://doi.org/10.1016/j.compositesa.2011.06.006

    Article  Google Scholar 

  80. Goyat MS et al (2019) Superior thermomechanical and wetting properties of ultrasonic dual mode mixing assisted epoxy-CNT nanocomposites. High Perform Polym 31(1):32–42. https://doi.org/10.1177/0954008317749021

    Article  Google Scholar 

  81. Haldera S, Ghosh PK, Goyat MS, Ray S (2013) Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J Adhes Sci Technol 27(2):111–124. https://doi.org/10.1080/01694243.2012.701510

    Article  Google Scholar 

  82. Chakraborty S, Panigrahi PK (2020) Stability of nanofluid: A review. Appl Therm Eng 174(115259):1–26. https://doi.org/10.1016/j.applthermaleng.2020.115259

    Article  Google Scholar 

  83. Blake GR (1965) Particle Density, in Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, no. 4949, pp 371–373

    Google Scholar 

  84. van Blaaderen A, Kentgens APM (1992) Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes. J Non Cryst Solids 149(3):161–178. https://doi.org/10.1016/0022-3093(92)90064-Q

    Article  Google Scholar 

  85. Karami M, Akhavan-Bahabadi MA, Delfani S, Raisee M (2015) Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renew Sustain Energy Rev 52:793–801. https://doi.org/10.1016/j.rser.2015.07.131

    Article  Google Scholar 

  86. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. https://doi.org/10.1107/s0021889869006558

    Article  Google Scholar 

  87. Jin SH et al (2021) Sonochemically activated solid-state synthesis of BaTiO3 powders. J Eur Ceram Soc 41(9):4826–4834. https://doi.org/10.1016/j.jeurceramsoc.2021.03.043

    Article  Google Scholar 

  88. Mayandi J et al (2021) Al-doped ZnO prepared by co-precipitation method and its thermoelectric characteristics. Mater Lett 288:129352. https://doi.org/10.1016/j.matlet.2021.129352

    Article  Google Scholar 

  89. Nobouassia Bewa C et al. (2022) Reaction kinetics and microstructural characteristics of iron-rich-laterite-based phosphate binder. Constr Build Mater. 320 (July 2021). https://doi.org/10.1016/j.conbuildmat.2021.126302.

  90. Ghosh S, Basu S, Chakraborty S, Mukherjee AK (2009) Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. J Appl Crystallogr 42(4):629–635. https://doi.org/10.1107/S0021889809016446

    Article  Google Scholar 

  91. Doebelin N, Kleeberg R (2015) Profex: A graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580. https://doi.org/10.1107/S1600576715014685

    Article  Google Scholar 

  92. Purwamargapratala Y, Sudaryanto S, Kartini E, Manawan M (2018) Synthesis of Li 4 Ti 5 O 12 -Sn by ultrasonic method as anode materials for lithium ion battery. IOP Conf Ser Mater Sci Eng 432(012062):1–7. https://doi.org/10.1088/1757-899X/432/1/012062

    Article  Google Scholar 

  93. Ankita A, Rohilla S (2019) Rietveld refinement of Al0.492Cr1.133 Fe0.78 Mg0.499 Ni0.007 O4 Si0.001 Ti0.082 Zn0.005 composite synthesized by coprecipitation method. AIP Conf Proc 140002:1–6. https://doi.org/10.1063/1.5122515

    Article  Google Scholar 

  94. HemmatEsfe M et al (2015) Experimental investigation and development of new correlations for thermal conductivity of CuO/EG-water nanofluid. Int Commun Heat Mass Transf 65:47–51. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.006

    Article  Google Scholar 

  95. Zhang YC, Tang JY, Wang GL, Zhang M, Hu XY (2006) Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J Cryst Growth 294(2):278–282. https://doi.org/10.1016/j.jcrysgro.2006.06.038

    Article  Google Scholar 

  96. Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W (2013) Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 34:740–745. https://doi.org/10.1016/j.egypro.2013.06.808

    Article  Google Scholar 

  97. Horti NC, Kamatagi MD, Patil NR, Sannaikar MS, Inamdar SR (2020) Synthesis and optical properties of copper oxide nanoparticles: effect of solvents. J Nanophotonics 14(04):1–9. https://doi.org/10.1117/1.jnp.14.046010

    Article  Google Scholar 

  98. Joni IM, Nulhakim L, Vanitha M, Panatarani C (2018) Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J Phys Conf Ser 1080:1–6. https://doi.org/10.1088/1742-6596/1080/1/012006

    Article  Google Scholar 

  99. Wang L et al (2007) Syntheses of CuO nanostructures in ionic liquids. Sci China Ser B Chem 50(1):63–69. https://doi.org/10.1007/s11426-007-0016-x

    Article  Google Scholar 

  100. Tamaekong N, Liewhiran C, Phanichphant S (2014) Synthesis of Thermally Spherical CuO Nanoparticles. J Nanomater 2014:1–5. https://doi.org/10.1155/2014/507978

    Article  Google Scholar 

  101. Hincapié-Rojas DF, Rosales-Rivera A, Pineda-Gomez P (2018) Synthesis and characterisation of submicron silica particles from rice husk. Green Mater 6(1):15–22. https://doi.org/10.1680/jgrma.17.00019

    Article  Google Scholar 

  102. Fernandes DM, Silva R, Hechenleitner AAW, Radovanovic E, Melo MAC, Pineda EAG (2009) Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater Chem Phys 115(1):110–115. https://doi.org/10.1016/j.matchemphys.2008.11.038

    Article  Google Scholar 

  103. Li Z, Kalbasi R, Nguyen Q, Afrand M (2020) Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures : An experimental study. Powder Technol 367:464–473. https://doi.org/10.1016/j.powtec.2020.03.058

    Article  Google Scholar 

  104. Sahooli M, Sabbaghi S (2013) CuO Nanofluids: The Synthesis and Investigation of Stability and Thermal Conductivity. J Nanofluids 1(2):155–160. https://doi.org/10.1166/jon.2012.1014

    Article  Google Scholar 

  105. Hetsroni G, Zakin JL, Lin Z, Mosyak A, Pancallo EA, Rozenblit R (2001) The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling. Int J Heat Mass Transf 44(2):485–497. https://doi.org/10.1016/s0017-9310(00)00099-5

    Article  Google Scholar 

  106. Bhuiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam A (2015) Effect of Nanoparticles Concentration and Their Sizes on Surface Tension of Nanofluids. Procedia Eng 105:431–437. https://doi.org/10.1016/j.proeng.2015.05.030

    Article  Google Scholar 

  107. Albright LF, Lohrenz J (1956) Viscosity of liquids. AIChE J 2(3):290–295. https://doi.org/10.1002/aic.690020304

    Article  Google Scholar 

  108. Ravikumar SV, Jha JM, Sarkar I, Pal SK, Chakraborty S (2014) Mixed-surfactant additives for enhancement of air-atomized spray cooling of a hot steel plate. Exp Therm Fluid Sci 55:210–220. https://doi.org/10.1016/j.expthermflusci.2014.03.007

    Article  Google Scholar 

  109. SyamSundar L, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. 44:7–14. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014

    Article  Google Scholar 

  110. Tavman I, Turgut A, Chirtoc M, Hadjov K, Fudym O, Tavman S (2009) Experimental study on thermal conductivity and viscosity of water based nanofluids. Proc Int Symp Convective Heat Mass Tran Sustain Energy 41(3):1–10. https://doi.org/10.1615/ICHMT.2009.CONV.930

    Article  Google Scholar 

  111. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles. Netsu Bussei 7(4):227–233. https://doi.org/10.2963/jjtp.7.227

    Article  Google Scholar 

  112. Jamshidi N (2012) Experimental Investigation on the Viscosity of Nanofluids. Int J Eng 25(3(B)):201–210. https://doi.org/10.5829/idosi.ije.2012.25.03b.07

    Article  Google Scholar 

  113. Pastoriza-Gallego MJ, Casanova C, Legido JL, Piñeiro MM (2011) CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilib 300(1–2):188–196. https://doi.org/10.1016/j.fluid.2010.10.015

    Article  Google Scholar 

  114. Babar H, Sajid MU, Ali HM (2019) Viscosity of hybrid nanofluids A Critical Review. Therm Sci 23(3):1713–1754

    Article  Google Scholar 

  115. Azizi Z, Alamdari A, Mohammad M (2018) Doroodmand, “Highly stable copper/carbon dot nanofluid Preparation and characterization.” J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7293-9(

    Article  Google Scholar 

  116. Nair V, Parekh AD, Tailor PR (2019) Experimental investigation of thermophysical properties of R718 based nanofluids at low temperatures. Heat Mass Transf und Stoffuebertragung 55(10):2769–2784. https://doi.org/10.1007/s00231-019-02624-y

    Article  Google Scholar 

  117. Godson L, Raja B, Lal DM, Wongwises S (2010) Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp Heat Transf 23(4):317–332. https://doi.org/10.1080/08916150903564796

    Article  Google Scholar 

  118. Perumal M, Balraj A, Jayaraman D, Krishnan J (2021) Experimental investigation of density, viscosity, and surface tension of aqueous tetrabutylammonium-based ionic liquids. Environ Sci Pollut Res 28(45):63599–63613. https://doi.org/10.1007/s11356-020-11174-4

    Article  Google Scholar 

  119. Mukherjee S, Mishra PC, Chaudhuri P (2018) Stability of Heat Transfer Nanofluids – A Review. ChemBioEng Rev 5(5):312–333. https://doi.org/10.1002/cben.201800008

    Article  Google Scholar 

  120. Bhattacharjee S (2016) DLS and zeta potential - What they are and what they are not? J Control Release 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  Google Scholar 

  121. Chakraborty S, Kumar P, Chakraborty S (2022) Nanofluids Long-term Stability Challenges and Guidelines, in Fundamentals and Transport Properties of Nanofluids, Murshed SMS, Ed. The Royal Society of Chemistry, pp 71–146

  122. Hasannejad R, Pourafshary P, Vatani A, Sameni A (2017) Application of silica nanofluid to control initiation of fines migration. Pet Explor Dev 44(5):850–859. https://doi.org/10.1016/S1876-3804(17)30096-4

    Article  Google Scholar 

  123. Zhao M et al. (2018) A study on preparation and stabilizing mechanism of hydrophobic silica nanofluids. Materials (Basel). 11(8). https://doi.org/10.3390/ma11081385

  124. Xu P, Wang H, Tong R, Du Q, Zhong W (2006) Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid Polym Sci 284(7):755–762. https://doi.org/10.1007/s00396-005-1428-9

    Article  Google Scholar 

  125. Antonioalvesjúnior J, Baptistabaldo J (2014) The Behavior of Zeta Potential of Silica Suspensions. New J Glas Ceram 04(02):29–37. https://doi.org/10.4236/njgc.2014.42004

    Article  Google Scholar 

  126. Bajpai S, Shreyash N, Sonker M, Tiwary SK, Biswas S (2021) Investigation of SiO2 Nanoparticle Retention in Flow Channels, Its Remediation Using Surfactants and Relevance of Artificial Intelligence in the Future. Chemistry (Easton) 3:1371–1380. https://doi.org/10.3390/chemistry3040098

    Article  Google Scholar 

  127. Jafari V, Allahverdi A, Vafaei M (2014) Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Adv Powder Technol 25(5):1571–1577. https://doi.org/10.1016/j.apt.2014.05.011

    Article  Google Scholar 

  128. Li D, Wells MA (2005) Effect of Subsurface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux during a Quench Operation. Metall Mater Trans B 36B(June):345–354. https://doi.org/10.1007/s11663-005-0064-6

    Article  Google Scholar 

  129. Jha JM, Ravikumar SV, Haldar K, Sarkar I, Pal SK, Chakraborty S (2015) Heat Transfer from a Hot Moving Steel Plate by Air-Atomized Spray Impingement. Exp Heat Transf 29:78–96. https://doi.org/10.1080/08916152.2014.945051

    Article  Google Scholar 

  130. Jha JM, Ravikumar SV, Sarkar I, Pal SK, Chakraborty S (2016) Jet Impingement Cooling of a Hot Moving Steel Plate: An Experimental Study. Exp Heat Transf. 1–17. https://doi.org/10.1080/08916152.2015.1046019

  131. Mohapatra SS et al (2015) Effect of oxide layer in the ultra fast cooling of a steel plate. Exp Heat Transf 28:156–173. https://doi.org/10.1080/08916152.2013.845624

    Article  Google Scholar 

  132. Sarkar I, Chakraborty S, Ashok A, Sengupta I, Pal SK, Chakraborty S (Jun.2018) Comparative study on different additives with a jet array on cooling of a hot steel surface. Appl Therm Eng 137:154–163. https://doi.org/10.1016/j.applthermaleng.2018.03.081

    Article  Google Scholar 

  133. Jha JM, Ravikumar SV, Haldar K, Sarkar I, Pal SK, Chakraborty S (2016) Heat Transfer from a Hot Moving Steel Plate by Air-Atomized Spray Impingement. Exp Heat Transf. https://doi.org/10.1080/08916152.2014.945051

    Article  Google Scholar 

  134. Busby HR, Trujillo DM (1985) Numerical solution to a two-dimensional inverse heat conduction problem. Int J Numer Methods Eng 21(2):349–359. https://doi.org/10.1002/nme.1620210211

    Article  MATH  Google Scholar 

  135. Kumar P, Chakraborty S (2022) Experimental investigation of hot AISI 304 steel plate with very-high mass-flux varying water temperature spray. Heat Transf 51(1):1110–1137. https://doi.org/10.1002/htj.22344

    Article  Google Scholar 

  136. Trujillo DM, Busby HR (1994) Optimal regularization of the inverse - heat conduction problem using the L-curve. Int J Numer Methods Heat Fluid Flow 4:447–452

    Article  Google Scholar 

  137. Kumar P, Paras, Bhattacharyya S, Chakraborty S (2022) Investigation of spray cooling in an inclined nozzle-plate configuration with varying coolant temperature. Exp Heat Transf. https://doi.org/10.1080/08916152.2022.2088895

  138. Abernethy RB, Benedict RP, Dowdell RB (1985) ASME Measurement Uncertainty. J Fluids Eng 107(2):161. https://doi.org/10.1115/1.3242450

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Departmental Research Facility, IIT Kharagpur, for providing characterization facilities for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to this work. Prashant Kumar was involved in conceptualization, nanofluid preparation, data collection, data curation, method, and analysis. Chandan Kumar Chaurasia tendered help during the nanofluid preparation, investigation, experimentation data collection, data curation, while Sudipa Das and Suparna Bhattacharyya tendered help during the spray cooling experiment. In manuscript draft writing, review, editing, supervision, and resource availability were done with the assistance of Prof. Sudipto Chakraborty. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sudipto Chakraborty.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Chaurasia, C.K., Das, S. et al. Synthesis, characterization and application of SiO2 and CuO nanofluid in spray cooling of hot steel plate. Heat Mass Transfer (2023). https://doi.org/10.1007/s00231-023-03345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00231-023-03345-z