Abstract
The current work uses SiO2 and CuO mono, mixed nanofluid to improve very-high mass-flux spray cooling performance. At first, the modified sol–gel method based SiO2 and wet-chemical method based CuO nanoparticles are prepared. The prepared nanoparticles' density, crystalline/amorphous nature, functional groups, compositions, morphology, and particle size are characterized. The SiO2 and CuO nanofluid are prepared using one-step and two-step methods, respectively. The nanofluid thermophysical properties, particle size distribution, and stability are determined. The heat transfer performance of applied nanofluid is assessed in terms of parameters cooling rate, heat flux, and heat transfer coefficient, which are estimated using inverse heat conduction analysis. The cooling performance improvement is observed with concentration enhancement for all nanofluids. However, for mono CuO and mixed SiO2-CuO nanofluid at their highest concentration, the cooling enhancement percent decreases compared to their second highest concentration. The highest cooling rate of 164 °C/s is observed for mixed nanofluid at the highest concentration. The average surface heat flux, critical heat flux, and average heat transfer coefficient improvement are maximum at 1.80 MW/m2, 2.36 MW/m2, and 2.67 kW/m2K, respectively, for mixed nanofluid highest concentration. Therefore, nanofluid inclusion leads to spray cooling performance improvement, with slight performance reduction after nanoparticle loading enhancement in some cases.
This is a preview of subscription content, access via your institution.























Data availability
Data available on request from the authors.
Abbreviations
- d:
-
Basal spacing
- \(C_{p}\) :
-
Specific heat capacity of stainless steel
- h:
-
Heat transfer coefficient
- \(k_{s}\) :
-
Thermal conductivity of stainless steel
- K:
-
Scherrer constant (= 0.9)
- L:
-
Crystallite size
- Q:
-
Surface heat flux
- Rwp :
-
Weighted profile R-factor
- Rexp :
-
Expected R-factor
- Ts :
-
Surface temperature
- Tc :
-
Coolant temperature
- ρ s :
-
Density of stainless steel
- β:
-
Full-width half maximum of diffraction peak (FWHM)
- θ:
-
X-ray diffraction angle
- λ:
-
X-ray wavelength
- χ2 :
-
Goodness of fit
- AHF:
-
Average heat flux
- AHTC:
-
Average Heat Transfer Coefficient
- AISI:
-
American Iron and Steel Institute
- CHF:
-
Critical Heat flux
- DIW:
-
De-ionized Water
- DLS:
-
Dynamic Light scattering
- EDS:
-
Energy dispersive spectroscopy
- FESEM:
-
Field emission scanning electron microscope
- FTIR:
-
Fourier-transform infrared spectroscopy
- GoF:
-
Goodness of fit
- HRM:
-
Hot Rolling Mill
- ICDD:
-
International Centre for Diffraction Data
- l-RHA:
-
Leached rice husk ash
- PPM:
-
Parts Per Million
- RH:
-
Rice Husk
- RHA:
-
Rice Husk Ash
- ROT:
-
Run-out Table
- SDS:
-
Sodium dodecyl sulfate
- SS:
-
Stainless Steel
- TC:
-
Thermocouple
- TCs:
-
Thermocouples
- UFC:
-
Ultrafast cooling
- u-RHA:
-
Unleached rice husk ash
- XRD:
-
X-ray diffraction
- XRF:
-
X-ray fluorescent
References
Bhattacharya P, Samanta AN, Chakraborty S (2009) Spray evaporative cooling to achieve ultra fast cooling in runout table. Int J Therm Sci 48(9):1741–1747. https://doi.org/10.1016/j.ijthermalsci.2009.01.015
Ravikumar SV, Jha JM, Mohapatra SS, Pal SK, Chakraborty S (2013) Influence of ultrafast cooling on microstructure and mechanical properties of steel. Steel Res Int. https://doi.org/10.1002/srin.201200346
Cornet X, Herman J-C (2004) Method of Making a Multiphase Hot-Rolled Steel Strip. US 6821364B2. https://doi.org/10.1016/j.(73)
Sun YK, Wu D (2009) Effect of Ultra-Fast Cooling on Microstructure of Large Section Bars of Bearing Steel. J Iron Steel Res Int 16(5):61-65,80. https://doi.org/10.1016/S1006-706X(10)60012-X
Tian Y, Tang S, Wang B, Wang Z, Wang G (2012) Development and industrial application of ultra-fast cooling technology. Sci China Technol Sci 55(6):1566–1571. https://doi.org/10.1007/s11431-012-4744-6
Ravikumar SV, Jha JM, Mohapatra SS, Sinha A, Pal SK, Chakraborty S (2013) Experimental study of the effect of spray inclination on ultrafast cooling of a hot steel plate. Heat Mass Transf 49(10):1509–1522. https://doi.org/10.1007/s00231-013-1190-3
Sengupta J, Thomas BG, Wells MA (Jan.2005) The use of water cooling during the continuous casting of steel and aluminum alloys. Metall Mater Trans A 36(1):187–204. https://doi.org/10.1007/s11661-005-0151-y
Liu EY, Peng LG, Guo Y, Wang ZD, Zhang DH, Wang GD (2012) Advanced run-out table cooling technology based on ultra fast cooling and laminar cooling in hot strip mill. J Cent South Univ Technol 19:1341–1345. https://doi.org/10.1007/s11771-012-1147-6
Mohapatra SS, Jha JM, Srinath K, Pal SK, Chakraborty S (2012) Enhancement of cooling rate for a hot steel plate using air-atomized spray with surfactant-added water. Exp Heat Transf 27(1):72–90. https://doi.org/10.1080/08916152.2012.719068
Chakraborty S, Sengupta I, Sarkar I, Pal SK, Chakraborty S (2019) Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu-Zn-Al LDH nanofluid. Appl Clay Sci 168:43–55. https://doi.org/10.1016/j.clay.2018.10.018
Sarkar I, Jha JM, Priyanka V, Pal SK, Chakraborty S (2019) Application of binary mixed surfactant additives in jet impingement cooling of a hot steel plate. Heat Mass Transf und Stoffuebertragung 55(12):3413–3425. https://doi.org/10.1007/s00231-019-02665-3
Ravikumar SV, Jha JM, Haldar K, Pal SK, Chakraborty S (2015) Surfactant-Based Cu–Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface. J Heat Transfer 137:1–8. https://doi.org/10.1115/1.4029815
Tiara AM, Chakraborty S, Sarkar I, Ashok A, Pal SK, Chakraborty S (2017) Heat transfer enhancement using surfactant based alumina nanofluid jet from a hot steel plate. Exp Therm Fluid Sci 89:295–303. https://doi.org/10.1016/j.expthermflusci.2017.08.023
Mohapatra SS et al (2014) Ultra fast cooling of hot steel plate by air atomized spray with salt solution. Heat Mass Transf und Stoffuebertragung 50(5):587–601. https://doi.org/10.1007/s00231-013-1260-6
Tiara AM, Chakraborty S, Sarkar I, Pal SK, Chakraborty S (2017) Synthesis and characterization of Zn-Al layered double hydroxide nanofluid and its application as a coolant in metal quenching. Appl Clay Sci 143:241–249. https://doi.org/10.1016/j.clay.2017.03.028
Jha JM, Sarkar I, Chakraborty S, Pal SK, Chakraborty S (2017) Heat transfer from a hot moving steel plate by using Cu-Al layered double hydroxide nanofluid based air atomized spray. Exp Heat Transf 30(6):500–516. https://doi.org/10.1080/08916152.2017.1312638
Tiara AM, Chakraborty S, Sarkar I, Pal SK, Chakraborty S (2016) Heat transfer in jet impingement on a hot steel surface using surfactant based Cu-Al layered double hydroxide nanofluid. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.094
Sarkar I, Chakraborty S, Jha JM, Pal SK, Chakraborty S (2017) Ultrafast cooling of a hot steel plate using Cu-Al layered double hydroxide nanofluid jet. Int J Therm Sci 116:52–62. https://doi.org/10.1016/j.ijthermalsci.2017.02.009
Tiara AM, Chakraborty S, Sarkar I, Pal SK, Chakraborty S (2017) Effect of alumina nanofluid jet on the enhancement of heat transfer from a steel plate. Heat Mass Transf 53:2187–2197. https://doi.org/10.1007/s00231-016-1955-6
Chakraborty S, Sarkar I, Behera DK, Pal SK, Chakraborty S (2017) Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2nanofluid. Powder Technol 307:10–24. https://doi.org/10.1016/j.powtec.2016.11.016
Jha JM, Sarkar I, Chakraborty S, Pal SK, Chakraborty S (2017) Heat transfer from a hot moving steel plate by using Cu-Al layered double hydroxide nanofluid based air atomized spray. Exp Heat Transf. https://doi.org/10.1080/08916152.2017.1312638
Amiri M, Movahedirad S, Manteghi F (2016) Thermal conductivity of water and ethylene glycol nanofluids containing new modified surface SiO2-Cu nanoparticles: Experimental and modeling. Appl Therm Eng 108:48–53. https://doi.org/10.1016/j.applthermaleng.2016.07.091
Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M (2019) An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. J Clean Prod 206:1089–1100. https://doi.org/10.1016/j.jclepro.2018.09.205
Shin D, Banerjee D (2011) Enhanced specific heat of silica nanofluid. J Heat Transfer 133(2):1–4. https://doi.org/10.1115/1.4002600
Golkhar A, Keshavarz P, Mowla D (2013) Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors. J Memb Sci 433:17–24. https://doi.org/10.1016/j.memsci.2013.01.022
Zafar S (2021) Experimental and numerical study of Pool boiling and critical heat flux enhancement using water based silica Nanofluids. Heat Mass Transf 57:1593–1607
Zhang Z et al (2022) Heat Transfer Enhancement Using Different SiO 2 Nanofluid Mixing Conditions on a Downward-facing Heating Surface Heat Transfer Enhancement Using Different SiO 2 Nanofluid Mixing Conditions on a Downward-facing Heating Surface. Nucl Technol 208:1605–1618. https://doi.org/10.1080/00295450.2022.2053927
Jal PK, Sudarshan M, Saha A, Patel S, Mishra BK (2004) Synthesis and characterization of nanosilica prepared by precipitation method. Colloids Surfaces A Physicochem Eng Asp 240:173–178. https://doi.org/10.1016/j.colsurfa.2004.03.021
Adam F, Chew TS, Andas J (2011) A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass. J Sol-Gel Sci Technol 59:580–583. https://doi.org/10.1007/s10971-011-2531-7
Lumen D et al (2021) Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. Eur J Pharm Biopharm 158:254–265. https://doi.org/10.1016/j.ejpb.2020.11.022
Hong R, Ding J, Zheng G (2004) Thermodynamic and particle-dynamic studies on synthesis of silica nanoparticles using microwave-induced plasma CVD. China Particuology 2(5):207–214. https://doi.org/10.1016/s1672-2515(07)60060-8
Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) Nano-structured silica from rice husk. J. Non. Cryst. Solids 145(C):75–79. https://doi.org/10.1016/S0022-3093(05)80433-8
Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290. https://doi.org/10.1016/j.jclepro.2016.11.142
Chakraborty S, Sarkar I, Roshan A, Pal SK, Chakraborty S (2019) Spray cooling of hot steel plate using aqueous solution of surfactant and polymer. Therm Sci Eng Prog 10:217–231. https://doi.org/10.1016/j.tsep.2019.02.003
Zhang Z, He W, Zheng J, Wang G, Ji J (2016) Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study. Nanoscale Res Lett. 11 (502). https://doi.org/10.1186/s11671-016-1726-9
Wang XJ, Li X, Yang S (2009) Influence of pH and SDBS on the stability and thermal conductivity of nanofluids. Energy Fuels 23(5):2684–2689. https://doi.org/10.1021/ef800865a
Qu J, Wu H (2011) Thermal performance comparison of oscillating heat pipes with SiO 2/water and Al2O3/water nanofluids. Int J Therm Sci 50(10):1954–1962. https://doi.org/10.1016/j.ijthermalsci.2011.04.004
Ajeel RK et al (2019) Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. Int J Heat Mass Transf 145:118806. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118806
Yan S, Wang F, Shi Z, Tian R (2017) Heat transfer property of SiO 2 / water nanofluid flow inside solar collector vacuum tubes. Appl Therm Eng 118:385–391. https://doi.org/10.1016/j.applthermaleng.2017.02.108
Fazeli SA, Hosseini Hashemi SM, Zirakzadeh H, Ashjaee M (2012) Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct. 51(2):247–264. https://doi.org/10.1016/j.spmi.2011.11.017
Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Dharma Rao V (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci 51:103–111. https://doi.org/10.1016/j.expthermflusci.2013.07.006
Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R (2016) Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng 102:1024–1036. https://doi.org/10.1016/j.applthermaleng.2016.04.051
Sahooli M, Sabbaghi S, ShariatyNiassar M (2012) Preparation of CuO/Water Nanofluids Using Polyvinylpyrrolidone and a Survey on Its Stability and Thermal Conductivity. Int J Nanosci Nanotechnol 8(1):27–34
RohiniPriya K, Suganthi KS, Rajan KS (2012) Transport properties of ultra-low concentration CuO-water nanofluids containing non-spherical nanoparticles. Int. J. Heat Mass Transf. 55(17–18):4734–4743. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.035
LeelaVinodhan V, Suganthi KS, Rajan KS (2016) Convective heat transfer performance of CuO-water nanofluids in U-shaped minitube: Potential for improved energy recovery. Energy Convers Manag 118:415–425. https://doi.org/10.1016/j.enconman.2016.04.017
Barbés B, Páramo R, Blanco E, Casanova C (2014) Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim 115(2):1883–1891. https://doi.org/10.1007/s10973-013-3518-0
Nallusamy S (2016) Thermal Conductivity Analysis and Characterization of Copper Oxide Nanofluids through Different Techniques. J Nano Res 40:105–112. https://doi.org/10.4028/www.scientific.net/JNanoR.40.105
Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7(5 M):1–5. https://doi.org/10.1186/1556-276X-7-70
Zhu H, Han D, Meng Z, Wu D, Zhang C (2011) Preparation and thermal conductivity of CuO nanofluid via a wet chemical method. Nanoscale Res Lett 6(1):2–7. https://doi.org/10.1186/1556-276X-6-181
Pai KK, Nikhil KS, Anas M, Joseph S (2018) Study of Preparation Characterisation and Thermal Properties of CuO Nanofluids. Asian J Appl Sci Technol 2(2):1005–1012
Topnani N, Kushwaha S, Athar T (2010) Wet Synthesis of Copper Oxide Nanopowder. Int J Green Nanotechnol Mater Sci Eng 1(2):M67–M73. https://doi.org/10.1080/19430840903430220
Yalçın G, Öztuna S, Dalkılıç AS, Wongwises S (2022) Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids. J Therm Anal Calorim 147(15):8243–8259. https://doi.org/10.1007/s10973-021-11076-8
Liu MS, Lin MCC, Wang CC (2011) Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett 6(1):297. https://doi.org/10.1186/1556-276X-6-297
Astanina MS, Abu-Nada E, Sheremet MA (2018) Combined effects of thermophoresis, Brownian motion, and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity. J Heat Transfer 140(8):1–12. https://doi.org/10.1115/1.4039217
Hwang YJ et al (2006) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 6(6):1068–1071. https://doi.org/10.1016/j.cap.2005.07.021
Cookson D, Routbort ÆJ (2008) Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids. J Nanoparticle Res 10:1109–1114. https://doi.org/10.1007/s11051-007-9347-y
Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem C 111(4):1646–1650. https://doi.org/10.1021/jp065926t
Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass Transf 39(5):665–669. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.012
Pavithra KS, Fasiulla, Yashoda MP, Prasannakumar S (2020) Synthesis, characterisation and thermal conductivity of CuO - water based nanofluids with different dispersants. Part Sci Technol 38(5):559–567. https://doi.org/10.1080/02726351.2019.1574941
Kujawska A et al (2021) Impact of Silica Nanofluid Deposition on Thermosyphon Performance Impact of Silica Nanofluid Deposition on Thermosyphon Performance. Heat Transf Eng 42(19–20):1702–1719. https://doi.org/10.1080/01457632.2020.1818413
Rostamian F, Etesami N (2018) Pool boiling characteristics of silica/water nanofluid and variation of heater surface roughness in domain of time. Int Commun Heat Mass Transf 95(May):98–105. https://doi.org/10.1016/j.icheatmasstransfer.2018.04.003
Mukherjee S, Ali N, Aljuwayhel NF, Mishra PC, Sen S, Chaudhuri P (2021) Pool Boiling Amelioration by Aqueous Dispersion of Silica Nanoparticles. Nanomaterials 11(2138):1–27
Tian Z, Etedali S, Afrand M, Abdollahi A, Goodarzi M (2019) Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nanofluid. Powder Technol 356:391–402. https://doi.org/10.1016/j.powtec.2019.08.049
Hegde RN, Rao SS, Reddy RP (2011) Experimental study on CuO nanoparticles in distilled water and its effect on heat transfer on a vertical surface. J Mech Sci Technol 25(11):2927–2934. https://doi.org/10.1007/s12206-011-0719-y
ZeinaliHeris S (2011) Experimental investigation of pool boiling characteristics of low-concentrated CuO/ethylene glycol-water nanofluids. Int Commun Heat Mass Transf 38(10):1470–1473. https://doi.org/10.1016/j.icheatmasstransfer.2011.08.004
Sarafraz MM, Hormozi F, Kamalgharibi M (2014) Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transf und Stoffuebertragung 50(9):1237–1249. https://doi.org/10.1007/s00231-014-1336-y
Li Z, Sarafraz MM, Mazinani A, Hayat T, Alsulami H, Goodarzi M (2020) Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces. Int J Heat Mass Transf 156:119780. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119780
Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: Recent research, development and applications. Renew Sustain Energy Rev 43:164–177. https://doi.org/10.1016/j.rser.2014.11.023
RangaBabu JA, Kumar KK, Srinivasa Rao S (2017) State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev 77(September 2016):551–565. https://doi.org/10.1016/j.rser.2017.04.040
Pramuanjaroenkij A, Tongkratoke A, Kakaç S (2018) Numerical Study of Mixing Thermal Conductivity Models for Nanofluid Heat Transfer Enhancement. J Eng Phys Thermophys 91(1):104–114. https://doi.org/10.1007/s10891-018-1724-0
Hamid KA, Azmi WH, Nabil MF, Mamat R (Oct.2017) Improved thermal conductivity of TiO 2 –SiO 2 hybrid nanofluid in ethylene glycol and water mixture. IOP Conf Ser Mater Sci Eng 257(012067):1–7. https://doi.org/10.1088/1757-899X/257/1/012067
Dalkılıç AS et al (2018) Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int Commun Heat Mass Transf 99(November):18–25. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.002
Charab AA, Movahedirad S, Norouzbeigi R (2017) Thermal conductivity of Al2O3 + TiO2/water nanofluid: Model development and experimental validation. Appl Therm Eng 119:42–51. https://doi.org/10.1016/j.applthermaleng.2017.03.059
Yıldız Ç, Arıcı M, Karabay H (2019) Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. Int J Heat Mass Transf 140:598–605. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.028
Kumar RS, Chaturvedi KR, Iglauer S, Trivedi J, Sharma T (2020) Impact of anionic surfactant on stability, viscoelastic moduli, and oil recovery of silica nanofluid in saline environment. J Pet Sci Eng 195(December 2019):107634. https://doi.org/10.1016/j.petrol.2020.107634
Kumar P, Chakraborty S (2022) Rice Husk-Derived Silica Nanoparticles Using Optimized Titrant Concentration for the One-Step Nanofluid Preparation, in Sustainable Chemical, Mineral and Material Processing. 303–318. https://doi.org/10.1007/978-981-19-7264-5_24
Bakar RA, Yahya R, Gan SN (2016) Production of High Purity Amorphous Silica from Rice Husk. Procedia Chem 19:189–195. https://doi.org/10.1016/j.proche.2016.03.092
Tran TH, Nguyen VT (2016) Phase transition of Cu2O to CuO nanocrystals by selective laser heating. Mater Sci Semicond Process 46:6–9. https://doi.org/10.1016/j.mssp.2016.01.021
Goyat MS, Ray S, Ghosh PK (2011) Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos Part A Appl Sci Manuf 42(10):1421–1431. https://doi.org/10.1016/j.compositesa.2011.06.006
Goyat MS et al (2019) Superior thermomechanical and wetting properties of ultrasonic dual mode mixing assisted epoxy-CNT nanocomposites. High Perform Polym 31(1):32–42. https://doi.org/10.1177/0954008317749021
Haldera S, Ghosh PK, Goyat MS, Ray S (2013) Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J Adhes Sci Technol 27(2):111–124. https://doi.org/10.1080/01694243.2012.701510
Chakraborty S, Panigrahi PK (2020) Stability of nanofluid: A review. Appl Therm Eng 174(115259):1–26. https://doi.org/10.1016/j.applthermaleng.2020.115259
Blake GR (1965) Particle Density, in Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, no. 4949, pp 371–373
van Blaaderen A, Kentgens APM (1992) Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes. J Non Cryst Solids 149(3):161–178. https://doi.org/10.1016/0022-3093(92)90064-Q
Karami M, Akhavan-Bahabadi MA, Delfani S, Raisee M (2015) Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renew Sustain Energy Rev 52:793–801. https://doi.org/10.1016/j.rser.2015.07.131
Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71. https://doi.org/10.1107/s0021889869006558
Jin SH et al (2021) Sonochemically activated solid-state synthesis of BaTiO3 powders. J Eur Ceram Soc 41(9):4826–4834. https://doi.org/10.1016/j.jeurceramsoc.2021.03.043
Mayandi J et al (2021) Al-doped ZnO prepared by co-precipitation method and its thermoelectric characteristics. Mater Lett 288:129352. https://doi.org/10.1016/j.matlet.2021.129352
Nobouassia Bewa C et al. (2022) Reaction kinetics and microstructural characteristics of iron-rich-laterite-based phosphate binder. Constr Build Mater. 320 (July 2021). https://doi.org/10.1016/j.conbuildmat.2021.126302.
Ghosh S, Basu S, Chakraborty S, Mukherjee AK (2009) Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. J Appl Crystallogr 42(4):629–635. https://doi.org/10.1107/S0021889809016446
Doebelin N, Kleeberg R (2015) Profex: A graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580. https://doi.org/10.1107/S1600576715014685
Purwamargapratala Y, Sudaryanto S, Kartini E, Manawan M (2018) Synthesis of Li 4 Ti 5 O 12 -Sn by ultrasonic method as anode materials for lithium ion battery. IOP Conf Ser Mater Sci Eng 432(012062):1–7. https://doi.org/10.1088/1757-899X/432/1/012062
Ankita A, Rohilla S (2019) Rietveld refinement of Al0.492Cr1.133 Fe0.78 Mg0.499 Ni0.007 O4 Si0.001 Ti0.082 Zn0.005 composite synthesized by coprecipitation method. AIP Conf Proc 140002:1–6. https://doi.org/10.1063/1.5122515
HemmatEsfe M et al (2015) Experimental investigation and development of new correlations for thermal conductivity of CuO/EG-water nanofluid. Int Commun Heat Mass Transf 65:47–51. https://doi.org/10.1016/j.icheatmasstransfer.2015.04.006
Zhang YC, Tang JY, Wang GL, Zhang M, Hu XY (2006) Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor. J Cryst Growth 294(2):278–282. https://doi.org/10.1016/j.jcrysgro.2006.06.038
Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W (2013) Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 34:740–745. https://doi.org/10.1016/j.egypro.2013.06.808
Horti NC, Kamatagi MD, Patil NR, Sannaikar MS, Inamdar SR (2020) Synthesis and optical properties of copper oxide nanoparticles: effect of solvents. J Nanophotonics 14(04):1–9. https://doi.org/10.1117/1.jnp.14.046010
Joni IM, Nulhakim L, Vanitha M, Panatarani C (2018) Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J Phys Conf Ser 1080:1–6. https://doi.org/10.1088/1742-6596/1080/1/012006
Wang L et al (2007) Syntheses of CuO nanostructures in ionic liquids. Sci China Ser B Chem 50(1):63–69. https://doi.org/10.1007/s11426-007-0016-x
Tamaekong N, Liewhiran C, Phanichphant S (2014) Synthesis of Thermally Spherical CuO Nanoparticles. J Nanomater 2014:1–5. https://doi.org/10.1155/2014/507978
Hincapié-Rojas DF, Rosales-Rivera A, Pineda-Gomez P (2018) Synthesis and characterisation of submicron silica particles from rice husk. Green Mater 6(1):15–22. https://doi.org/10.1680/jgrma.17.00019
Fernandes DM, Silva R, Hechenleitner AAW, Radovanovic E, Melo MAC, Pineda EAG (2009) Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater Chem Phys 115(1):110–115. https://doi.org/10.1016/j.matchemphys.2008.11.038
Li Z, Kalbasi R, Nguyen Q, Afrand M (2020) Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures : An experimental study. Powder Technol 367:464–473. https://doi.org/10.1016/j.powtec.2020.03.058
Sahooli M, Sabbaghi S (2013) CuO Nanofluids: The Synthesis and Investigation of Stability and Thermal Conductivity. J Nanofluids 1(2):155–160. https://doi.org/10.1166/jon.2012.1014
Hetsroni G, Zakin JL, Lin Z, Mosyak A, Pancallo EA, Rozenblit R (2001) The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling. Int J Heat Mass Transf 44(2):485–497. https://doi.org/10.1016/s0017-9310(00)00099-5
Bhuiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam A (2015) Effect of Nanoparticles Concentration and Their Sizes on Surface Tension of Nanofluids. Procedia Eng 105:431–437. https://doi.org/10.1016/j.proeng.2015.05.030
Albright LF, Lohrenz J (1956) Viscosity of liquids. AIChE J 2(3):290–295. https://doi.org/10.1002/aic.690020304
Ravikumar SV, Jha JM, Sarkar I, Pal SK, Chakraborty S (2014) Mixed-surfactant additives for enhancement of air-atomized spray cooling of a hot steel plate. Exp Therm Fluid Sci 55:210–220. https://doi.org/10.1016/j.expthermflusci.2014.03.007
SyamSundar L, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. 44:7–14. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.014
Tavman I, Turgut A, Chirtoc M, Hadjov K, Fudym O, Tavman S (2009) Experimental study on thermal conductivity and viscosity of water based nanofluids. Proc Int Symp Convective Heat Mass Tran Sustain Energy 41(3):1–10. https://doi.org/10.1615/ICHMT.2009.CONV.930
Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles. Netsu Bussei 7(4):227–233. https://doi.org/10.2963/jjtp.7.227
Jamshidi N (2012) Experimental Investigation on the Viscosity of Nanofluids. Int J Eng 25(3(B)):201–210. https://doi.org/10.5829/idosi.ije.2012.25.03b.07
Pastoriza-Gallego MJ, Casanova C, Legido JL, Piñeiro MM (2011) CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilib 300(1–2):188–196. https://doi.org/10.1016/j.fluid.2010.10.015
Babar H, Sajid MU, Ali HM (2019) Viscosity of hybrid nanofluids A Critical Review. Therm Sci 23(3):1713–1754
Azizi Z, Alamdari A, Mohammad M (2018) Doroodmand, “Highly stable copper/carbon dot nanofluid Preparation and characterization.” J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7293-9(
Nair V, Parekh AD, Tailor PR (2019) Experimental investigation of thermophysical properties of R718 based nanofluids at low temperatures. Heat Mass Transf und Stoffuebertragung 55(10):2769–2784. https://doi.org/10.1007/s00231-019-02624-y
Godson L, Raja B, Lal DM, Wongwises S (2010) Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid. Exp Heat Transf 23(4):317–332. https://doi.org/10.1080/08916150903564796
Perumal M, Balraj A, Jayaraman D, Krishnan J (2021) Experimental investigation of density, viscosity, and surface tension of aqueous tetrabutylammonium-based ionic liquids. Environ Sci Pollut Res 28(45):63599–63613. https://doi.org/10.1007/s11356-020-11174-4
Mukherjee S, Mishra PC, Chaudhuri P (2018) Stability of Heat Transfer Nanofluids – A Review. ChemBioEng Rev 5(5):312–333. https://doi.org/10.1002/cben.201800008
Bhattacharjee S (2016) DLS and zeta potential - What they are and what they are not? J Control Release 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
Chakraborty S, Kumar P, Chakraborty S (2022) Nanofluids Long-term Stability Challenges and Guidelines, in Fundamentals and Transport Properties of Nanofluids, Murshed SMS, Ed. The Royal Society of Chemistry, pp 71–146
Hasannejad R, Pourafshary P, Vatani A, Sameni A (2017) Application of silica nanofluid to control initiation of fines migration. Pet Explor Dev 44(5):850–859. https://doi.org/10.1016/S1876-3804(17)30096-4
Zhao M et al. (2018) A study on preparation and stabilizing mechanism of hydrophobic silica nanofluids. Materials (Basel). 11(8). https://doi.org/10.3390/ma11081385
Xu P, Wang H, Tong R, Du Q, Zhong W (2006) Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization. Colloid Polym Sci 284(7):755–762. https://doi.org/10.1007/s00396-005-1428-9
Antonioalvesjúnior J, Baptistabaldo J (2014) The Behavior of Zeta Potential of Silica Suspensions. New J Glas Ceram 04(02):29–37. https://doi.org/10.4236/njgc.2014.42004
Bajpai S, Shreyash N, Sonker M, Tiwary SK, Biswas S (2021) Investigation of SiO2 Nanoparticle Retention in Flow Channels, Its Remediation Using Surfactants and Relevance of Artificial Intelligence in the Future. Chemistry (Easton) 3:1371–1380. https://doi.org/10.3390/chemistry3040098
Jafari V, Allahverdi A, Vafaei M (2014) Ultrasound-assisted synthesis of colloidal nanosilica from silica fume: Effect of sonication time on the properties of product. Adv Powder Technol 25(5):1571–1577. https://doi.org/10.1016/j.apt.2014.05.011
Li D, Wells MA (2005) Effect of Subsurface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux during a Quench Operation. Metall Mater Trans B 36B(June):345–354. https://doi.org/10.1007/s11663-005-0064-6
Jha JM, Ravikumar SV, Haldar K, Sarkar I, Pal SK, Chakraborty S (2015) Heat Transfer from a Hot Moving Steel Plate by Air-Atomized Spray Impingement. Exp Heat Transf 29:78–96. https://doi.org/10.1080/08916152.2014.945051
Jha JM, Ravikumar SV, Sarkar I, Pal SK, Chakraborty S (2016) Jet Impingement Cooling of a Hot Moving Steel Plate: An Experimental Study. Exp Heat Transf. 1–17. https://doi.org/10.1080/08916152.2015.1046019
Mohapatra SS et al (2015) Effect of oxide layer in the ultra fast cooling of a steel plate. Exp Heat Transf 28:156–173. https://doi.org/10.1080/08916152.2013.845624
Sarkar I, Chakraborty S, Ashok A, Sengupta I, Pal SK, Chakraborty S (Jun.2018) Comparative study on different additives with a jet array on cooling of a hot steel surface. Appl Therm Eng 137:154–163. https://doi.org/10.1016/j.applthermaleng.2018.03.081
Jha JM, Ravikumar SV, Haldar K, Sarkar I, Pal SK, Chakraborty S (2016) Heat Transfer from a Hot Moving Steel Plate by Air-Atomized Spray Impingement. Exp Heat Transf. https://doi.org/10.1080/08916152.2014.945051
Busby HR, Trujillo DM (1985) Numerical solution to a two-dimensional inverse heat conduction problem. Int J Numer Methods Eng 21(2):349–359. https://doi.org/10.1002/nme.1620210211
Kumar P, Chakraborty S (2022) Experimental investigation of hot AISI 304 steel plate with very-high mass-flux varying water temperature spray. Heat Transf 51(1):1110–1137. https://doi.org/10.1002/htj.22344
Trujillo DM, Busby HR (1994) Optimal regularization of the inverse - heat conduction problem using the L-curve. Int J Numer Methods Heat Fluid Flow 4:447–452
Kumar P, Paras, Bhattacharyya S, Chakraborty S (2022) Investigation of spray cooling in an inclined nozzle-plate configuration with varying coolant temperature. Exp Heat Transf. https://doi.org/10.1080/08916152.2022.2088895
Abernethy RB, Benedict RP, Dowdell RB (1985) ASME Measurement Uncertainty. J Fluids Eng 107(2):161. https://doi.org/10.1115/1.3242450
Acknowledgements
We want to thank Departmental Research Facility, IIT Kharagpur, for providing characterization facilities for this work.
Author information
Authors and Affiliations
Contributions
All authors have contributed to this work. Prashant Kumar was involved in conceptualization, nanofluid preparation, data collection, data curation, method, and analysis. Chandan Kumar Chaurasia tendered help during the nanofluid preparation, investigation, experimentation data collection, data curation, while Sudipa Das and Suparna Bhattacharyya tendered help during the spray cooling experiment. In manuscript draft writing, review, editing, supervision, and resource availability were done with the assistance of Prof. Sudipto Chakraborty. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kumar, P., Chaurasia, C.K., Das, S. et al. Synthesis, characterization and application of SiO2 and CuO nanofluid in spray cooling of hot steel plate. Heat Mass Transfer (2023). https://doi.org/10.1007/s00231-023-03345-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00231-023-03345-z