Skip to main content
Log in

Analysis of enhanced pool boiling heat transfer on a copper foam surface with microchannels

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Pool boiling heat transfer has numerous applications. This experiment investigates the effect of laser etching of polished copper and copper foam surfaces on pool boiling heat transfer of deionized water in this context. The laser-machined samples had the same width, depth, and different vertical microchannels. The results showed that when compared to the polish surface, the CHF and HTC both improved. At the same time, the laser etching copper foam surface had a much higher strengthening effect than the laser etching polish surface, and it performed better under low heat flux conditions. The CHF can be reinforced 3.71 times, while the HTC can be reinforced 5.28 times. The physical model of the same structure was also calculated with ANSYS, and the results were comparable to the experimental results. When compared to smooth or single structure surfaces, the composite structure demonstrated superior heat transfer performance of pool boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article. 

References

  1. 王灿, 张雅欣, 碳中和愿景的实现路径与政策体系 中国环境管理 (2020). 12(06):58–64. https://doi.org/10.16868/j.cnki.1674-6252.2020.06.058

  2. 张希良, 黄晓丹, 张达, 耿涌, 田立新, 范英, 陈文颖, 碳中和目标下的能源经济转型路径与政策研究 管理世界 (2022). 38(01):35–66. https://doi.org/10.19744/j.cnki.11-1235/f.2022.0005

  3. Chao D, Yi D, Zhuoling Q, Liaofei Y, Li J (2021) Experimental investigation of saturated nucleate pool boiling heat transfer characteristics of R245fa on a copper foam covered surface. Int J Heat Mass Transf 179. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121740

  4. Saneie N, Kulkarni V, Treska B, Fezzaa K, Patankar N, Anand S (2021) Microbubble dynamics and heat transfer in boiling droplets. Int J Heat Mass Transf 176. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121413

  5. Carey VP (1992) Liquid vapor phase change phenomena: An introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment, Second Edition, CRC Press

  6. Inbaoli A, Kumar S, Jayaraj S (2022) A review on techniques to alter the bubble dynamics in pool boiling. Appl Therm Eng 214. https://doi.org/10.1016/J.APPLTHERMALENG.2022.118805

  7. Kumar SS, Deepak S (2021) Review of pool and flow boiling heat transfer enhancement through surface modification. Int J Heat Mass Transf 181. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.122020

  8. Li H, Li R, Zhou R, Zhou G, Tang Y (2020) Pool boiling heat transfer of multi-scale composite copper powders fabricated by sintering-alloying-dealloying treatment. Int J Heat Mass Transf 147(C). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118962

  9. Han CY, Peter G (1965) The mechanism of heat transfer in nucleate pool boilingâ Part I: Bubble initiaton, growth and departure. Int J Heat Mass Transf 8(6). https://doi.org/10.1016/0017-9310(65)90073-6

  10. Zuber N (1959) Hydrodynamic aspects of boiling heat transfer, AEC Report No. AECU-4439. https://doi.org/10.2172/4175511

  11. Khooshehchin M, Fathi S, Mohammadidoust A, Salimi F, Ovaysi S (2022) Experimental study of the effects of horizontal and vertical roughnesses of heater surface on bubble dynamic and heat transfer coefficient in pool boiling. Heat Mass Transf (prepublish). https://doi.org/10.1007/S00231-022-03180-8

  12. Stephan P, Hammer J (1994) A new model for nucleate boiling heat transfer. Heat Mass Transf 30(2). https://doi.org/10.1007/BF00715018

  13. Sun R, Hua J, Zhang X, Zhao X (2021) Experimental study on the effect of shape on the boiling flow and heat transfer characteristics of different pin-fin microchannels. Heat Mass Transf 57(12). https://doi.org/10.1007/S00231-021-03092-Z

  14. Xie S, Beni MS, Cai J, Zhao J (2018) Review of critical-heat-flux enhancement methods. Int J Heat Mass Transf 122. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.116

  15. Kim H, Park Y, Kim H, Lee C, Jerng DW, Kim DE (2017) Critical heat flux enhancement by single-layered metal wire mesh with micro and nano-sized pore structures. Int J Heat Mass Transf 115. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.066

  16. Hsu YY (1962) On the size range of active nucleation cavities on a heating surface. J Heat Transf 84(3). https://doi.org/10.1115/1.3684339

  17. Mahmoud MM, Karayiannis TG (2021) Pool Boiling review: Part i - fundamentals of boiling and relation to surface design thermal science and engineering progress. 25(prepublish). https://doi.org/10.1016/J.TSEP.2021.101024

  18. Mao N, Zhuang J, He T, Song M (2021) A critical review on measures to suppress flow boiling instabilities in microchannels. Heat Mass Transf (prepublish). https://doi.org/10.1007/S00231-020-03009-2

  19. Mohammadi HR, Taghvaei H, Rabiee A (2022) Experimental study of pool boiling on hydrophilic and hydrophobic thin films deposited on copper surfaces using atmospheric cold plasma. Int J Therm Sci 175. https://doi.org/10.1016/J.IJTHERMALSCI.2022.107474

  20. Manetti LL, Ribatski G, Souza RRD, Cardoso EM (2020) Pool boiling heat transfer of HFE-7100 on metal foams. Exp Thermal Fluid Sci 113(C)

  21. Calmidi VV, Mahajan RL (1999) The Effective thermal conductivity of high porosity fibrous metal foams. J Heat Transf 121(2). https://doi.org/10.1115/1.2826001

  22. Mancin S, Zilio C, Diani A, Rossetto L (2013) Air forced convection through metal foams: Experimental results and modeling. Int J Heat Mass Transf 62. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.050

  23. Thiagarajan SJ, Yang R, King C, Narumanchi S (2015) Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces. Int J Heat Mass Transf 89. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.013

  24. El-Genk MS, Parker JL (2004) Enhanced boiling of HFE-7100 dielectric liquid on porous graphite. Energy Convers Manag 46(15). https://doi.org/10.1016/j.enconman.2004.11.012

  25. Xu J, Ji X, Zhang W, Liu G (2008) Pool boiling heat transfer of ultra-light copper foam with open cells. Int J Multiphase Flow 34(11). https://doi.org/10.1016/j.ijmultiphaseflow.2008.05.003

  26. Chenggang H, Hui W, Eric L, Yikai T, Hengxue X (2023) Experimental study of multilayer gradient copper foam effect on pool boiling heat transfer performance and gas-liquid behavior characteristics. Int J Therm Sci 183. https://doi.org/10.1016/J.IJTHERMALSCI.2022.107856

  27. Du YP, Zhao CY, Tian Y, Qu ZG (2012) Analytical considerations of flow boiling heat transfer in metal-foam filled tubes. Heat Mass Transf 48(1). https://doi.org/10.1007/s00231-011-0853-1

  28. Dhir VK, Liaw SP (1989) Framework for a unified model for nucleate and transition pool boiling. J Heat Transf 111(3). https://doi.org/10.1115/1.3250745

  29. Zhao YH, Masuoka T, Tsuruta T (2002) Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model. Int JHeat Mass Transf 45(15). https://doi.org/10.1016/S0017-9310(02)00022-4

  30. Lachi ML, Lessa DOI, Maria CE (2022) Thermal efficiency of open-cell metal foams: Impact of foam thickness by comparing correlations and numerical modeling. App Thermal Eng 207. https://doi.org/10.1016/S0017-9310(02)00022-410.1016/S0017-9310(02)00022-4

  31. Li T, Wu X, Ma Q (2019) Pool boiling heat transfer of R141b on surfaces covered copper foam with circular-shaped channels. Exp Thermal Fluid Sci 105. https://doi.org/10.1016/j.expthermflusci.2019.03.015

  32. Norbert D, Robert P, Robert K (2022) Pool boiling heat transfer on minichannels with porous structure. EPJ Web Conf 264. https://doi.org/10.1051/EPJCONF/202226401010

  33. 江卫玉, 基于微尺度开槽泡沫铜结构流动沸腾强化换热研究, 江苏科技大学 (2021). https://doi.org/10.27171/d.cnki.ghdcc.2021.000241

  34. 吴文婷, 铜氧化物微结构调控及其防污机制研究, 中国科学院大学(中国科学院宁波材料技术与工程研究所) (2019). https://doi.org/10.27884/d.cnki.gknbs.2019.000011

  35. Kumar A, Shukla SK, Kumar A (2018) Heat loss analysis: An approach toward the revival of  parabolic dish type solar cooker. Int J Green Energy 15(2). https://doi.org/10.1080/15435075.2018.1423978

  36. Robert JM (1988) Describing the uncertainties in experimental results. Exp Thermal Fluid Sci 1(1). https://doi.org/10.1016/0894-1777(88)90043-X

  37. Moreno G, Kekelia B, Sitaraman H, Narumanchi S, Bennion K (2019) Nucleate pool boiling of R-245fa at low saturation temperatures for hydrogen precooling applications. Int JHeat Mass Transf 132. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.123

  38. Wong KK, Leong KC (2018) Saturated pool boiling enhancement using porous lattice structures produced by Selective Laser Melting. Int JHeat Mass Transf 121

  39. Robert K, Robert P (2021) Pool boiling of water on surfaces with open microchannels energies 14(11). https://doi.org/10.3390/EN14113062

  40. Novak Z (1963) Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. Int J Heat Mass Transf 6(1). https://doi.org/10.1016/0017-9310(63)90029-2

  41. Carey VP (2002) Molecular dynamics simulations and liquid-vapor phase-change phenomena microscale. Thermophys Eng 6(1). https://doi.org/10.1080/108939502753428194

  42. 杨珊, 微/纳复合表面强化沸腾换热机制可视化研究与分析, 江苏科技大学 (2021). https://doi.org/10.27171/d.cnki.ghdcc.2021.000819

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant No: 21868022), the science and technology planning project of Inner Mongolia (Grant No: 2021GG0043), and the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. 2022LHMS02002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Yingjie Kang, Gangqiang Wu, Zhongmin Lang and Hu Zhao. The first draft of the manuscript was written by Yingjie Kang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wu Gangqiang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yingjie, K., Gangqiang, W., Zhongmin, L. et al. Analysis of enhanced pool boiling heat transfer on a copper foam surface with microchannels. Heat Mass Transfer 59, 1293–1309 (2023). https://doi.org/10.1007/s00231-022-03337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03337-5

Navigation