Skip to main content

Thermal performance improvement of multilayer insulation technique


Multilayer insulation (MLI) technique has provided a reliable thermal protection mechanism for cryostat’s cold wall boundary against the ambient heat load, in particular, the thermal radiation heat load. The aim of the current work is to attain an improved thermal performance from MLI technique by scrutinizing its insulation potential in terms of the heat load. The intervening medium in this investigation is made up of three suitable spacer and radiation shield materials: perforated Double Aluminized Mylar (DAM) with Dacron, perforated DAM with Glass−tissue, and unperforated DAM with Silk−net. The thermal performance of MLI system is evaluated by exploring the impact of associated physical parameters such as emissivity and residual gas pressure, geometry of the radiation shields (perforation styles of radiation shields), and analyzing the effect of the radiation shield’s arrangement on the heat load. We have observed that for perforated DAM with Dacron, the radiation heat load is the lowest. A medium vacuum level < 0.01 Torr, perforation style PS\(_{\mathrm {A}}\) in the radiation shield (in low−temperature region), and positioning radiation shields with decreasing spacing from the cold to hot wall boundary region facilitates a significant reduction in the heat load.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Radiation shields are typically comprised of thin (paper−like) polyethylene or Mylar sheet reflecting layers, leading to a great number of such layers between the cold and hot wall boundaries. These reflective layers are usually coated with Aluminium (also Gold or Silver) on both sides to attain a high reflecting performance value [44]. Frequently utilized radiation shields in MLI technique are Double Aluminized Kapton [40], Double Aluminized Mylar (DAM) [9] and Aluminium foils [44], etc. There are many spacers used in various MLI performances like Nomex [40], Carbon fibrous, Alumina fibrous [5], Dacron, Glass−tissue, Silk−net [27], Refrasil [44], etc.


  1. Weisend JG II (ed) (2016) Cryostat design: case studies, principles and engineering. Springer International Publishing, Cham, Switzerland, pp 1–45

  2. Hooks J, Demko JA, Fesmire JE, Matsumoto T (2017) IOP Conf Ser Mater Sci Eng 278:012199

  3. Angloher G, The EURECA Collaboration et al (2014) Phys Dark Universe 3:41

    Article  Google Scholar 

  4. Johnson WL (2012) AIP Conf Proc 1434:1519; McIntosh GE, McIntosh RC (2020) IOP Conf Ser Mater Sci Eng 755:012001

  5. Chen MJ, Zhang P, Li Q (2018) Sci China Tech Sci 61:994; Jiang WB, Zuo ZQ, Huang YH, Wang B, Sun PJ, Li P (2018) Cryogenics 96:90; Mazzinghi A, Sabbadini M, Freni A (2018) Sci. Rep 8:91

  6. Sutheesh PM, Chollackal A (2018) IOP Conf Ser Mater Sci Eng 396:012061

  7. McFarland C, Agarwal RK (2022) Mechanical Engineering and Materials Science Independent Study 176

  8. Gogu C, Bapanapalli SK, Haftka RT, Sankar BV (2009) J Spacecr Rocket 46:501

    Article  Google Scholar 

  9. Singh D, Pandey A, Singh MK, Singh L, Singh V (2020) JINST 15:P07032

    Article  Google Scholar 

  10. Nast TC, Frank DJ, Feller J (2014) Cryogenics 64:105; Ding W, Zhou Y, Gu M, Gong J, Xu J (2022) Energies 15:4831

  11. Baudouy B (2014) CERN-2014-005. CERN Geneva, Switzerland, pp 329

  12. Kumar S (2016) J Therm Sci Eng Appl 8:021003

  13. Lacerda G, Curi M (2020) Revista de Engenharia Térmica 19(2):70; Mzad H, Haouam A (2020) Progress in Superconductivity and Cryogenics 22(1):17 

  14. Ji T, Zhang R, Sunden B, Xie G (2014) Appl Therm Eng 70(1):957;  Deng B, Yang S, Xie X, Wang Y, Bian X, Gong L, Li Q (2019) Cryogenics 100:114

  15. Chen M, Li Q, Zhang P (2022) Appl Therm Eng 210:118318

  16. Barabanov I et al (2009) Nucl Instrum Methods Phys Res A 606:790

    Article  Google Scholar 

  17. Elchert JP (2018) Thermal and Fluids Analysis Workshop (TFAWS) 20

  18. Hedayat A et al (2000) 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

  19. Fesmire J, Johnson W (2018) Cryogenics 89:58

    Article  Google Scholar 

  20. Cunnington GR et al (1971) Interim report LMSC-A903316/NASA CR-72605, Lockheed Missile and Space Company, Sunnyvale, CA, U.S.A.

  21. Wang B, Huang YH, Li P, Sun PJ, Chen ZC, Wu JY (2016) Cryogenics 80:154

    Article  Google Scholar 

  22. Ross RG Jr, Boyle RF (2006) International Cryocooler Conference Annapolis

  23. Li P, Cheng H (2006) Appl Therm Eng 26

  24. Keller CW, Cunnington GR, Glassford AP (1974) NASA Contractor Report 134477

  25. Johnson WL (2007) Thermal performance of cryogenic multilayer insulation at various layer spacings. Master thesis, Auburn University

  26. Johnson WL, Frank DJ, Nast TC, Fesmire JE (2015) IOP Conf Ser Mater Sci Eng 101:012018

  27. McIntosh GE (1994) Adv Cryog Eng 39B:1683

    Article  Google Scholar 

  28. McIntosh GE (1994) In: Kittel P (ed) Advances in Cryogenic Engineering. Springer, Boston, MA, pp 39

  29. Lucie M, Veronika M, Josef S, Oldrich Z (2019) Mater Sci Forum 955:25

    Article  Google Scholar 

  30. Borst M (2020) Mass optimisation of cryogenic fluid systems for long-duration space missions. Master thesis, Delft University of Technology

  31. Johnson WL (2010) AIP Conf Proc 1218:804

    Article  Google Scholar 

  32. Mazzone L et al (2002) European organization for Nuclear research, Laboratory for Particle Physics. Divisional Report, CERN LHC/2002-18 (ECR)

  33. Agostini M et al (2014) Eur Phys J C 74:2764

    Article  Google Scholar 

  34. Parma V (2013) Cryostat Design, CERN Yellow Report, CERN-2014-005, vol 353

  35. Godfrin H (2011) European Advanced Cryogenics School-Chichilianne

  36. Teodorescu G (2007) Radiative emissivity of metals and oxidized metals at high temperature. PhD thesis, Auburn University

  37. Kaufman JG (2016) ASM International 138

  38. Geyari C, Pundak N (1971) Vacuum 21:413

    Article  Google Scholar 

  39. Johnson WL (2009) Cryogenics Test Laboratory 321:867

    Google Scholar 

  40. Sun PJ, Wu JY, Zhang P, Xu L, Jiang ML (2009) Cryogenics 49:719

    Article  Google Scholar 

  41. Abgrall N, LEGEND Collaboration et al (2021) Preprint at

  42. Albert JB, nEXO Collaboration et al (2018) Phys Rev C 97:065503 

  43. Fesmire JE, Augustynowicz SD, Rouanet S (2008) AIP Conf Proc 985:1359

    Article  Google Scholar 

  44. Cunnington GR Jr, Zierman CA, Funai AI, Lindahn A (1967) NASA Contract Rep 907

Download references


The author D. Singh sincerely acknowledges Council of Scientific and Industrial Research (CSIR−UGC), New Delhi, India, for the financial support in the form of CSIR (JRF/SRF) fellowship. The authors D. Singh and V. Singh are grateful to the Ministry of Human Resource Development (MHRD), New Delhi, India for the financial support through Scheme for Promotion of Academic and Research Collaboration (SPARC) project No. SPARC/2018−2019/P242/SL.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. K. Singh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Singh, M.K., Chaubey, A. et al. Thermal performance improvement of multilayer insulation technique. Heat Mass Transfer (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: