Skip to main content

Advertisement

Log in

A review of corrosion failures in shell and tube heat exchangers: roots and advanced counteractive

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The shell and tube heat exchangers have great potential in industry applications for thermal energy transfer. However, the primary concerns in designing a shell and tube heat exchanger include resistance to corrosion, erosion, vibration, thermal fatigue, and proper material selection. The root cause and progression must be investigated and understood to avoid operation failures successfully. This article systematically summarizes the most common types of heat exchanger failures. The failure modes, mechanism, and possible contributing factors are ascertained and suggested recently developed corrective measures to avoid the reoccurrence of a similar failure. The failure cases with respect to equipment design, materials of construction, and service conditions are discussed. Besides, the hypothesis of microbiological-induced corrosion (MIC) and its advanced protective measure are reviewed. It is suggested that green inhibitors (e.g., essential oils, cinnamaldehydes) could play a low-cost potential alternative in controlling MIC. Furthermore, several machine learning approaches are highlighted for predicting failure in advance to schedule maintenance earlier. This technique helps lower the costs that are acquired due to system shutdowns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramesh K, Shah DPS (2003) Fundamentals of Heat Exchanger Design. Wiley, Hoboken

    Google Scholar 

  2. Sadik K, Liu Hongtan PA (2002) Heat Exchangers: Selection, Rating, and Thermal Design, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  3. Sadighi Dizaji H, Jafarmadar S, Asaadi S (2017) Experimental exergy analysis for shell and tube heat exchanger made of corrugated shell and corrugated tube. Exp Therm Fluid Sci 81:475–481. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2016.09.007

    Article  Google Scholar 

  4. Esfahani MR, Languri EM (2017) Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Exp Therm Fluid Sci 83:100–106. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2016.12.004

    Article  Google Scholar 

  5. Sinnott R (2005) Chemical Engineering Design, 4th edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  6. Abd AA, Kareem MQ, Naji SZ (2018) Performance analysis of shell and tube heat exchanger: parametric study. Case Stud Therm Eng 12:563–568. https://doi.org/10.1016/j.csite.2018.07.009

    Article  Google Scholar 

  7. Miansari M, Jafarzadeh A, Arasteh H, Toghraie D (2020) Thermal performance of a helical shell and tube heat exchanger without fin, with circular fins, and with V-shaped circular fins applying on the coil. J Therm Anal Calorim 1436(143):4273–4285. https://doi.org/10.1007/S10973-020-09395-3

    Article  Google Scholar 

  8. Hossain SMZ, Irfan MF, Elkanzi EM, Saif KM (2021) Fabrication of a hybrid shell and double pipe heat exchanger by means of design and performance assessment. Chem Eng Process - Process Intensif 165:108430. https://doi.org/10.1016/J.CEP.2021.108430

    Article  Google Scholar 

  9. Mukherjee R (1998) Effectively design shell-and-tube heat exchangers. Chem Eng Prog 94:21–37

    Google Scholar 

  10. Pettigrew MJ, Carlucci LN, Taylor CE, Fisher NJ (1991) Flow-induced vibration and related technologies in nuclear components. Nucl Eng Des 131:81–100. https://doi.org/10.1016/0029-5493(91)90319-D

    Article  Google Scholar 

  11. Goyder HGD (2002) Flow-induced vibration in heat exchangers. Chem Eng Res Des 80:226–232. https://doi.org/10.1205/026387602753581971

    Article  Google Scholar 

  12. Zhao Y, Qi Z, Wang Q et al (2012) Effect of corrosion on performance of fin-and-tube heat exchangers with different fin materials. Exp Therm Fluid Sci 37:98–103. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2011.10.008

    Article  Google Scholar 

  13. Oon CS, Kazi SN, Zubir N et al (2020) Fouling and fouling mitigation of mineral salt using bio-based functionalized graphene nano-plates. J Therm Anal Calorim 1461(146):265–275. https://doi.org/10.1007/S10973-020-09940-0

    Article  Google Scholar 

  14. Addepalli S, Eiroa D, Lieotrakool S et al (2015) Degradation Study of Heat Exchangers. In: Procedia CIRP. Elsevier B.V., pp 137–142

  15. Ali M, Ul-Hamid A, Alhems LM, Saeed A (2020) Review of common failures in heat exchangers – Part I: mechanical and elevated temperature failures. Eng Fail Anal 109:104396. https://doi.org/10.1016/J.ENGFAILANAL.2020.104396

  16. Chandra K, Kain V, Sinha SK, Gujar HG (2020) Metallurgical investigation of a heat-exchanger tube of 70/30 cupronickel failed by fretting corrosion. Eng Fail Anal 116:104756. https://doi.org/10.1016/J.ENGFAILANAL.2020.104756

    Article  Google Scholar 

  17. Abbas T, Khushnood S, Nizam L, Usman M (2017) Fretting wear analysis of different tube materials used in heat exchanger tube bundle. Adv Sci Technol Res J 11:123–133. https://doi.org/10.12913/22998624/80309

    Article  Google Scholar 

  18. Klein U, Zunkel A, Eberle A (2014) Breakdown of heat exchangers due to erosion corrosion and fretting caused by inappropriate operating conditions. Eng Fail Anal 43:271–280. https://doi.org/10.1016/J.ENGFAILANAL.2014.03.019

    Article  Google Scholar 

  19. Lim MK, Oh SD, Lee YZ (2003) Friction and wear of Inconel 690 and Inconel 600 for steam generator tube in room temperature water. Nucl Eng Des 2:97–105. https://doi.org/10.1016/S0029-5493(03)00187-0

    Article  Google Scholar 

  20. Patil R, Bhutada SS, Katruwar NR et al (2014) Vibrational analysis of a shell and tube type of heat exchanger in accordance with tubular exchanger manufacturer’s association (Tema) norms. The Int J Eng Sci (4):59–64

  21. Weaver DS, Fitzpatrick JA (1988) A review of cross-flow induced vibrations in heat exchanger tube arrays. J Fluids Struct 2:73–93. https://doi.org/10.1016/S0889-9746(88)90137-5

    Article  Google Scholar 

  22. Cheng L, Luan T, Du W, Xu M (2009) Heat transfer enhancement by flow-induced vibration in heat exchangers. Int J Heat Mass Transf 52:1053–1057. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.037

    Article  MATH  Google Scholar 

  23. Fiorentin TA, Mikowski A, Silva OM, Lenzi A (2017) Noise and vibration analysis of a heat exchanger: A case study. In: International Journal of Acoustics and Vibrations. International Institute of Acoustics and Vibrations, pp 270–275

  24. Dole, R., Sridhar, S., Vivekanand S Mitigate vibration issues in shell-and-tube heat exchangers. In: 2015. https://www.hydrocarbonprocessing.com/magazine/2015/december-2015/heat-exchange/mitigate-vibration-issues-in-shell-and-tube-heat-exchangers. Accessed 23 Feb 2022

  25. Gupta GP (1990) Working with heat exchangers: questions and answers. Hemisphere Publishing Cooperation, New York

    Google Scholar 

  26. Khilnaney VK (1992) Heat exchanger vibrations - a case study. In: National symposium on commissioning and operating experiences in heavy water plants and associated chemical industries. Bombay, India

  27. Kunwer R, Pandey S, Sureshchandra Bhurat S (2020) Comparison of selected shell and tube heat exchangers with segmental and helical baffles. Therm Sci Eng Prog 20:100712. https://doi.org/10.1016/J.TSEP.2020.100712

    Article  Google Scholar 

  28. Shinde S, Chavan U (2018) Numerical and experimental analysis on shell side thermo-hydraulic performance of shell and tube heat exchanger with continuous helical FRP baffles. Therm Sci Eng Prog 5:158–171. https://doi.org/10.1016/J.TSEP.2017.11.006

    Article  Google Scholar 

  29. Kral D, Stehlik P, Van Der Ploeg HJ, Master BI (2007) helical baffles in shell-and-tube heat exchangers, Part I: experimental verification. 17:93–101. https://doi.org/10.1080/01457639608939868

  30. Kral D, Stehlik P, Van Der Ploeg HJ, Master BI (1996) Helical baffles in shell-and-tube heat exchangers, Part I: experimental verification. Heat Transf Eng 17:93–101. https://doi.org/10.1080/01457639608939868

    Article  Google Scholar 

  31. Zhang JF, Li B, Huang WJ et al (2009) Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles. Chem Eng Sci 64:1643–1653. https://doi.org/10.1016/J.CES.2008.12.018

    Article  Google Scholar 

  32. El Maakoul A, Laknizi A, Saadeddine S et al (2016) Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles. Appl Therm Eng 109:175–185. https://doi.org/10.1016/J.APPLTHERMALENG.2016.08.067

    Article  Google Scholar 

  33. Li H, Kottke V (1998) Visualization and determination of local heat transfer coefficients in shell-and-tube heat exchangers for staggered tube arrangement by mass transfer measurements. Exp Therm Fluid Sci 17:210–216. https://doi.org/10.1016/S0894-1777(97)10064-4

    Article  Google Scholar 

  34. Reppich M, Zagermann S (1995) A new design method for segmentally baffled heat exchangers. Comput Chem Eng 19:137–142. https://doi.org/10.1016/0098-1354(95)87028-8

    Article  Google Scholar 

  35. Shinde SK, Pancha H, Pavithran S (2012) Improved performance of helixchanger over segmental baffle heat exchanger using Kern’s Method. Int J Adv Eng Technol 29:29–39

    Google Scholar 

  36. Gao B, Bi Q, Nie Z, Wu J (2015) Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles. Exp Therm Fluid Sci Complete:48–57. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2015.04.011

  37. Kazi SN (2012) Fouling and fouling mitigation on heat exchanger surfaces. In: Heat Exchangers - Basics Design Applications. InTech

  38. Heggs PJ (1997) Fouling of heat exchangers. Int J Heat Mass Transf 40:1991. https://doi.org/10.1016/S0017-9310(96)00261-X

    Article  Google Scholar 

  39. Bott TR (1995) Fouling of Heat Exchangers. Elsevier, Amsterdam

    Google Scholar 

  40. Trueba A, García S, Otero FM (2014) Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater. Biofouling 30:95–103. https://doi.org/10.1080/08927014.2013.847926

    Article  Google Scholar 

  41. Chenoweth JM (1988) General design of heat exchangers for fouling conditions. Fouling Sci Technol: 477–494. https://doi.org/10.1007/978-94-009-2813-8_32

  42. Garrett-Price BA, Smith SA, Watts RL, Knudsen JG (1985) Fouling of heat exchangers : characteristics, costs, prevention, control, and removal. Noyes Pubns, Saddle River

  43. Standards of the Tubular Exchanger Manufacturers Association (2007), 9th edn. TEMA, New York

  44. Liu L, Ding N, Shi J et al (2016) Failure analysis of tube-to-tubesheet welded joints in a shell-tube heat exchanger. Case Stud Eng Fail Anal 7:32–40. https://doi.org/10.1016/J.CSEFA.2016.06.002

    Article  Google Scholar 

  45. Zhu LK, Qiao LJ, Li XY et al (2013) Analysis of the tube-sheet cracking in slurry oil steam generators. Eng Fail Anal 34:379–386. https://doi.org/10.1016/J.ENGFAILANAL.2013.08.007

    Article  Google Scholar 

  46. Adullah S, Ezuber HM (2011) Repair of tube-tubesheet weld cracks in a cracked gas/steam heat exchanger. J Fail Anal Prev 116(11):611–617. https://doi.org/10.1007/S11668-011-9482-8

    Article  Google Scholar 

  47. Sui R, Wang W, Liu Y et al (2014) Root cause analysis of stress corrosion at tube-to-tubesheet joints of a waste heat boiler. Eng Fail Anal 45:398–405. https://doi.org/10.1016/J.ENGFAILANAL.2014.07.013

    Article  Google Scholar 

  48. Shahrani S, Al-Subai S (2014) Failure analysis of heat exchanger tubes. J Fail Anal Prev 146(14):790–800. https://doi.org/10.1007/S11668-014-9888-1

    Article  Google Scholar 

  49. Xu S, Wang C, Wang W (2015) Failure analysis of stress corrosion cracking in heat exchanger tubes during startup operation. Eng Fail Anal 51:1–8. https://doi.org/10.1016/J.ENGFAILANAL.2015.02.005

    Article  Google Scholar 

  50. Wei XL, Ling X (2015) Investigation of welded structures on mechanical properties of 304L welded tube-to-tubesheet joints. Eng Fail Anal 52:90–96. https://doi.org/10.1016/J.ENGFAILANAL.2015.03.003

    Article  Google Scholar 

  51. Yokell S (1982) Heat exchanger tube to tubesheet connections. Chem Eng 75:78–94

    Google Scholar 

  52. Guo C, Han CJ, Tang YM et al (2011) Failure analysis of welded 0Cr13Al tube bundle in a heat exchanger. Eng Fail Anal 3:890–894. https://doi.org/10.1016/J.ENGFAILANAL.2010.11.003

    Article  Google Scholar 

  53. Harison J (1999) Standards of the Tubular Exchanger Manufacturer Association. In: TEMA, 8th edn. TEMA, New York

  54. ASME (2021) BPVC Section VIII-Division 1-Rules for Construction of Pressure Vessels - ASME. Am Soc Mech Eng

  55. Kuppan T (2013) Heat exchanger design handbook. In: Kuppan T (ed) CRC Press, Taylor and Francis Group, 2nd ed.. CRC Press, Taylor and Francis Group, New York

  56. Ates AMS (1998) Welding Handbook, Materials and Applications - Vol 4 Part 2, 8th edn. American Welding Society, Miami

  57. Vaccaro FP, Theus GJ, Miglin BP, Roy S (1987) The effect of steam generator tube temperature on the stress corrosion creaking of alloy 600. Nucl J Canada 1:302–312

    Google Scholar 

  58. Ahmed TM, Alfantazi A, Budac J, Freeman G (2009) Failure analysis of 316L stainless steel tubing of the high-pressure still condenser. Eng Fail Anal 16:1432–1441. https://doi.org/10.1016/J.ENGFAILANAL.2008.09.015

    Article  Google Scholar 

  59. Corleto CR, Argade GR (2017) Failure analysis of dissimilar weld in heat exchanger. Case Stud Eng Fail Anal 9:27–34. https://doi.org/10.1016/J.CSEFA.2017.05.003

    Article  Google Scholar 

  60. Huang T, Zhang G, Liu F (2018) Design, manufacturing and repair of tube-to-tubesheet welds of steam generators of CPR1000 units. Nucl Eng Des 333:55–62. https://doi.org/10.1016/J.NUCENGDES.2018.04.003

    Article  Google Scholar 

  61. Corte JS, Rebello JMA, Areiza MCL et al (2015) Failure analysis of AISI 321 tubes of heat exchanger. Eng Fail Anal 56:170–176. https://doi.org/10.1016/J.ENGFAILANAL.2015.03.008

    Article  Google Scholar 

  62. Hwang SS, Kim HP (2013) SCC analysis of alloy 600 tubes from a retired steam generator. J Nucl Mater 440:129–135. https://doi.org/10.1016/J.JNUCMAT.2013.04.061

    Article  Google Scholar 

  63. Zhai Z, Toloczko MB, Olszta MJ, Bruemmer SM (2017) Stress corrosion crack initiation of alloy 600 in PWR primary water. Corros Sci 123:76–87. https://doi.org/10.1016/J.CORSCI.2017.04.013

    Article  Google Scholar 

  64. Moss T, Kuang W, Was GS (2018) Stress corrosion crack initiation in Alloy 690 in high temperature water. Curr Opin Solid State Mater Sci 22:16–25. https://doi.org/10.1016/J.COSSMS.2018.02.001

    Article  Google Scholar 

  65. Palen JW (1995) Heat Exchangers, Vaporizers, and Condensers, 3rd edn. Cherry Hill

  66. Singh KP, Soler AI (1984) Practical considerations in heat exchanger design and use. Mech Des Heat Exch: 1007–1020. https://doi.org/10.1007/978-3-662-12441-3_22

  67. Marton S, Svensson E, Harvey S (2020) Operability and technical implementation issues related to heat integration measures—interview study at an oil refinery in Sweden. Energies 13:3478. https://doi.org/10.3390/EN13133478

    Article  Google Scholar 

  68. Hu SM, Wang SH, Yang ZG (2015) Failure analysis on unexpected wall thinning of heat-exchange tubes in ammonia evaporators. Case Stud Eng Fail Anal 3:52–61. https://doi.org/10.1016/J.CSEFA.2015.01.002

    Article  Google Scholar 

  69. Elragei O, Elshawesh F, Ezuber HM (2010) Corrosion failure 90/10 cupronickel tubes in a desalination plant. Desalin Water Treat 21:17–22. https://doi.org/10.5004/DWT.2010.1156

    Article  Google Scholar 

  70. Ranjbar K (2010) Effect of flow induced corrosion and erosion on failure of a tubular heat exchanger. Mater Des 31:613–619. https://doi.org/10.1016/J.MATDES.2009.06.025

    Article  Google Scholar 

  71. Mousavian RT, Hajjari E, Ghasemi D et al (2011) Failure analysis of a shell and tube oil cooler. Eng Fail Anal 18:202–211. https://doi.org/10.1016/J.ENGFAILANAL.2010.08.022

    Article  Google Scholar 

  72. Gavrila L, Gavrila D, Simion AI, Martin CC (2002) Galvanic corrosion in cooling water environments. Sci study Res 3:93–108. https://doi.org/10.1016/B978-044452787-5.00033-0

    Article  Google Scholar 

  73. Shalaby HM (2006) Failure investigation of Muntz tubesheet and Ti tubes of surface condenser. Eng Fail Anal 13:780–788. https://doi.org/10.1016/J.ENGFAILANAL.2005.02.003

    Article  Google Scholar 

  74. Shankar AR, Sole R, Thyagarajan K et al (2019) Failure analysis of titanium heater tubes and stainless steel heat exchanger weld joints in nitric acid loop. Eng Fail Anal 99:248–262. https://doi.org/10.1016/J.ENGFAILANAL.2019.02.016

    Article  Google Scholar 

  75. Kim YS, Kim JG (2018) Investigation of corrosion for aluminium fin-tube heat exchanger according to the corrosion potential and solution conductivity using a boundary element method. In: EUROCORR. ICE Krakow, Poland

  76. Ezuber HM (2014) Influence of temperature on the pitting corrosion behavior of AISI 316L in chloride–CO2 (sat.) solutions. Mater Des 59:339–343. https://doi.org/10.1016/J.MATDES.2014.02.045

    Article  Google Scholar 

  77. Ezuber H, Alshater A, Nisar SO et al (2018) Effect of surface finish on the pitting corrosion behavior of sensitized AISI 304 austenitic stainless steel alloys in 3.5% NaCl solutions. Surf Eng Appl Electrochem 54:73–80. https://doi.org/10.3103/S1068375518010039

    Article  Google Scholar 

  78. Yang ZG, Gong Y, Yuan JZ (2012) Failure analysis of leakage on titanium tubes within heat exchangers in a nuclear power plant Part I: electrochemical corrosion. Mater Corros 63:7–17. https://doi.org/10.1002/MACO.201106189

    Article  Google Scholar 

  79. Ghayad IM, Hamid ZA, Gomaa N (2015) A case study: corrosion failure of tube heat exchanger. J Metall Eng 4:57–61

    Google Scholar 

  80. Kuźnicka B (2009) Erosion–corrosion of heat exchanger tubes. Eng Fail Anal 16:2382–2387. https://doi.org/10.1016/J.ENGFAILANAL.2009.03.026

    Article  Google Scholar 

  81. Tapping RL, Lavoie PA, Disney DJ (1987) Corrosion of heat exchanger materials under heat transfer conditions. Nucl J Canada 1:123–128

    Google Scholar 

  82. Covington L (1976) Pitting Corrosion of Titanium Tubes in Hot Concentrated Brine Solutions. Galvanic Pitting Corros Lab Stud: 147–147–8. https://doi.org/10.1520/STP41403S

  83. Hu HX, Zheng YG, Zhang YM, Niu C (2015) Failure analysis of a reboiler in the waste water stripping tower of a petrochemical plant. J Fail Anal Prev 6:828–836. https://doi.org/10.1007/S11668-015-0022-9

    Article  Google Scholar 

  84. Allahkaram SR, Zakersafaee P, Haghgoo SAM (2011) Failure analysis of heat exchanger tubes of four gas coolers. Eng Fail Anal 18:1108–1114. https://doi.org/10.1016/J.ENGFAILANAL.2010.11.015

    Article  Google Scholar 

  85. Mueller RA (1980) Pitting and crevice corrosion in ERW carbon steel heat exchanger tubes. J Mater Energy Syst 2:60–64. https://doi.org/10.1007/BF02833431

    Article  Google Scholar 

  86. Syrett BC, Coit RL (1983) Causes and prevention of power plant condenser tube failures. Mater Perform 22(2): 44–50

  87. Thulukkanam K (2000) Heat Exchanger Design Handbook. Heat Exch Des Handb. https://doi.org/10.1201/9781420026870/HEAT-EXCHANGER-DESIGN-HANDBOOK-KUPPAN-THULUKKANAM

  88. Davis JR (2001) Copper and copper alloys. ASM International

  89. Darbandi M, Abdollahpour MS, Hasanpour-Matkolaei M (2021) A new developed semi-full-scale approach to facilitate the CFD simulation of shell and tube heat exchangers. Chem Eng Sci 245:116836. https://doi.org/10.1016/J.CES.2021.116836

    Article  Google Scholar 

  90. Kannadhasan V, Senthil Kumar A, Vairamuthu J (2021) Nagarajan R (2021) Experimental research and CFD analysis on double pipe heat exchanger with CuO nano particle suspended in cold water. J Therm Anal Calorim 1475(147):3831–3838. https://doi.org/10.1007/S10973-021-10804-4

    Article  Google Scholar 

  91. Nešić S (2006) Using computational fluid dynamics in combating erosion–corrosion. Chem Eng Sci 61:4086–4097. https://doi.org/10.1016/J.CES.2006.01.052

    Article  Google Scholar 

  92. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236. https://doi.org/10.1128/AEM.02848-13

    Article  Google Scholar 

  93. Enning D, Venzlaff H, Garrelfs J et al (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772–1787. https://doi.org/10.1111/J.1462-2920.2012.02778.X

    Article  Google Scholar 

  94. Rao TS, Sairam TN, Viswanathan B, Nair KVK (2000) Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corros Sci 42:1417–1431. https://doi.org/10.1016/S0010-938X(99)00141-9

    Article  Google Scholar 

  95. Guan F, Zhai X, Duan J et al (2016) Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization. PLoS ONE 11:e0162315. https://doi.org/10.1371/JOURNAL.PONE.0162315

    Article  Google Scholar 

  96. Stadler R, Wei L, Fürbeth W et al (2010) Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS). Mater Corros 61:1008–1016. https://doi.org/10.1002/MACO.201005819

    Article  Google Scholar 

  97. Wu M, Sun D, Gong K (2020) Microbiologically assisted cracking of X70 submarine pipeline induced by sulfate-reducing bacteria at various cathodic potentials. Eng Fail Anal 109:104293. https://doi.org/10.1016/j.engfailanal.2019.104293

  98. Little B, Staehle R, Davis R (2001) Fungal influenced corrosion of post-tensioned cables. Int Biodeterior Biodegrad 47:71–77. https://doi.org/10.1016/S0964-8305(01)00039-7

    Article  Google Scholar 

  99. Liu H, Xu D, Dao AQ et al (2015) Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corros Sci 101:84–93. https://doi.org/10.1016/J.CORSCI.2015.09.004

    Article  Google Scholar 

  100. Xu D, Gu T (2014) Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeterior Biodegrad 91:74–81

    Article  Google Scholar 

  101. Wigglesworth-Cooksey B, Cooksey KE (2005) Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Appl Environ Microbiol 71:428–435. https://doi.org/10.1128/AEM.71.1.428-435.2005

    Article  Google Scholar 

  102. Liu H, Sharma M, Wang J et al (2018) Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorella vulgaris. Int Biodeterior Biodegrad 129:209–216

    Article  Google Scholar 

  103. Jia R, Yang D, Xu J et al (2017) Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corros Sci 127:1–9

    Article  Google Scholar 

  104. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186. https://doi.org/10.1016/J.COPBIO.2004.05.001

    Article  Google Scholar 

  105. Hossain SMZ, Razzak SA, Hossain MM (2020) Application of essential oils as green corrosion inhibitors. Arab J Sci Eng 459(45):7137–7159. https://doi.org/10.1007/S13369-019-04305-8

    Article  Google Scholar 

  106. Lewandowski Z, Beyenal H (2009) Mechanisms of microbially influenced corrosion. Mar Ind Biofouling: 35–64. https://doi.org/10.1007/978-3-540-69796-1_3

  107. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169–180

  108. Kamal C, Sethuraman MG (2014) Kappaphycus alvarezii – A marine red alga as a green inhibitor for acid corrosion of mild steel. Mater Corros 65:846–854. https://doi.org/10.1002/MACO.201307089

    Article  Google Scholar 

  109. San NO, Nazir H, Dönmez G (2012) Evaluation of microbiologically influenced corrosion inhibition on Ni–Co alloy coatings by Aeromonas salmonicida and Clavibacter michiganensis. Corros Sci 65:113–118. https://doi.org/10.1016/J.CORSCI.2012.08.009

    Article  Google Scholar 

  110. Huttunen-Saarivirta E, Honkanen M, Lepistö T et al (2012) Microbiologically influenced corrosion (MIC) in stainless steel heat exchanger. Appl Surf Sci 258:6512–6526. https://doi.org/10.1016/J.APSUSC.2012.03.068

    Article  Google Scholar 

  111. Abraham GJ, Kain V, Dey GK (2009) MIC failure of cupronickel condenser tube in fresh water application. Eng Fail Anal 16:934–943. https://doi.org/10.1016/J.ENGFAILANAL.2008.08.007

    Article  Google Scholar 

  112. Rao TS, Nair KVK (1998) Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater. Corros Sci 40:1821–1836. https://doi.org/10.1016/S0010-938X(98)00079-1

    Article  Google Scholar 

  113. Sharma P (2014) Microbiological-influenced corrosion failure of a heat exchanger tube of a fertilizer plant. J Fail Anal Prev 143(14):314–317. https://doi.org/10.1007/S11668-014-9826-2

    Article  Google Scholar 

  114. Rizk TY, Al-Nabulsi KM, Cho MH (2017) Microbially induced rupture of a heat exchanger shell. Eng Fail Anal C:1–9. https://doi.org/10.1016/J.ENGFAILANAL.2016.11.004

  115. Mand J, Park HS, Jack TR, Voordouw G (2014) The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 268. https://doi.org/10.3389/FMICB.2014.00268

  116. Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27:80–86. https://doi.org/10.1038/SJ.JIM.7000166

    Article  Google Scholar 

  117. Faes W, Lecompte S, Ahmed ZY et al (2019) Corrosion and corrosion prevention in heat exchangers. Corros Rev 37:131–155. https://doi.org/10.1515/CORRREV-2018-0054

    Article  Google Scholar 

  118. Liu S, Gu L, Zhao H et al (2016) Corrosion resistance of graphene-reinforced waterborne epoxy coatings. J Mater Sci Technol 32:425. https://doi.org/10.1016/J.JMST.2015.12.017

    Article  Google Scholar 

  119. Rajeev P, Surendranathan A, Murthy S (2012) Corrosion mitigation of the oil well steels using organic inhibitors - a review. J Mater Environ Sci 3(5):856–869

  120. Bathily M, Ngom B, Gassama D, Tamba S (2021) Review on essential oils and their corrosion-inhibiting properties. Am J App Chem 9(3):65-73. https://doi.org/10.11648/J.AJAC.20210903.12. http://www.sciencepublishinggroup.com

  121. Boumhara K, Tabyaoui M, Jama C, Bentiss F (2015) Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and XPS investigations. J Ind Eng Chem 29:146–155. https://doi.org/10.1016/J.JIEC.2015.03.028

    Article  Google Scholar 

  122. Mansouri M, El OY, Znini M et al (2015) Adsorption proprieties and inhibition of mild steel corrosion in HCl solution by the essential oil from fruit of Moroccan Ammodaucus leucotrichus. J Mater Environ Sci 6:631–646.

    Google Scholar 

  123. Hossain SMZ, Al-Shater A, Kareem SA et al (2019) Cinnamaldehyde as a green inhibitor in mitigating AISI 1015 carbon steel corrosion in HCl. Arab J Sci Eng 446(44):5489–5499. https://doi.org/10.1007/S13369-019-03793-Y

    Article  Google Scholar 

  124. Zakir Hossain SM, Kareem SA, Alshater AF et al (2019) (2019) Effects of cinnamaldehyde as an eco-friendly corrosion inhibitor on mild steel in aerated NaCl solutions. Arab J Sci Eng 451(45):229–239. https://doi.org/10.1007/S13369-019-04236-4

    Article  Google Scholar 

  125. López P, Sanchez C, Batlle R, Nerín C (2007) Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J Agric Food Chem 55:4348–4356. https://doi.org/10.1021/JF063295U

    Article  Google Scholar 

  126. Rahman MM, Sultana T, Yousuf Ali M et al (2017) Chemical composition and antibacterial activity of the essential oil and various extracts from Cassia sophera L. against Bacillus sp. from soil. Arab J Chem 10:S2132–S2137. https://doi.org/10.1016/J.ARABJC.2013.07.045

    Article  Google Scholar 

  127. Siddiqui SA, Islam R, Islam R et al (2017) Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd. Arab J Chem 10:S2170–S2174. https://doi.org/10.1016/J.ARABJC.2013.07.050

    Article  Google Scholar 

  128. Shu Y, Yang G, Liu Z (2022) Experimental study on fretting damage in the interference fit area of high-speed train wheels and axles based on specimen. Eng Fail Anal 141:106619. https://doi.org/10.1016/J.ENGFAILANAL.2022.106619

    Article  Google Scholar 

  129. Gao F, Sun Z, Yang S et al (2022) Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution. Mater Charact 192:112126. https://doi.org/10.1016/J.MATCHAR.2022.112126

    Article  Google Scholar 

  130. Zhu GY, Li YY, Zhang GA (2022) Interaction between crevice and galvanic corrosion of X65 carbon steel in the CO2-saturated NaCl solution under the coupling of crevice and galvanic effects. J Electroanal Chem 918:116482. https://doi.org/10.1016/J.JELECHEM.2022.116482

    Article  Google Scholar 

  131. Kaur H, Singh H (2022) Improving pitting corrosion resistance of AISI 316L weld overlays via Inconel 82 additions. Mater Today Proc 62(14):A7–A13. https://doi.org/10.1016/J.MATPR.2022.08.472

    Article  Google Scholar 

  132. Yoneda S, Hayashi S, Miyakoshi Y et al (2022) Erosion-corrosion behavior of Ni-20Cr-4Fe and Ni-20Cr-4Fe-7Mo under fluidized-bed biomass boiler conditions. Corros Sci 205:110472. https://doi.org/10.1016/J.CORSCI.2022.110472

    Article  Google Scholar 

  133. Nasiriardali M, Boroujeny BS, Doostmohammadi A et al (2022) Improvement of biological and corrosion behavior of 316 L stainless steel using PDMS-Ag doped Willemite nanocomposite coating. Prog Org Coatings 165:106733. https://doi.org/10.1016/J.PORGCOAT.2022.106733

    Article  Google Scholar 

  134. Zhao Y, Bai L, Sun Y et al (2021) Low-temperature alkali corrosion induced growth of nanosheet layers on NiTi alloy and their corrosion behavior and biological responses. Corros Sci 190:109654. https://doi.org/10.1016/J.CORSCI.2021.109654

    Article  Google Scholar 

  135. Taqvi SAA, Zabiri H, Tufa LD et al (2021) A review on data-driven learning approaches for fault detection and diagnosis in chemical processes. ChemBioEng Rev 8:239–259. https://doi.org/10.1002/CBEN.202000027

    Article  Google Scholar 

  136. Sohaib M, Kim C-H, Kim J-M (2017) A hybrid feature model and deep-learning-based bearing fault diagnosis. Sensors 7(12):876. https://doi.org/10.3390/s17122876

  137. Deshmukh M, Dumbre R, Anekar S et al (2021) Condition monitoring and predictive maintenance of process equipments. ITM Web Conf 40:01003. https://doi.org/10.1051/ITMCONF/20214001003

    Article  Google Scholar 

  138. Bode G, Thul S, Baranski M, Müller D (2020) Real-world application of machine-learning-based fault detection trained with experimental data. Energy 198:117323. https://doi.org/10.1016/J.ENERGY.2020.117323

    Article  Google Scholar 

  139. Feyli B, Soltani H, Hajimohammadi R et al (2022) A reliable approach for heat exchanger networks synthesis with stream splitting by coupling genetic algorithm with modified quasi-linear programming method. Chem Eng Sci 248:117140. https://doi.org/10.1016/J.CES.2021.117140

    Article  Google Scholar 

  140. Sundar S, Rajagopal MC, Zhao H et al (2020) Fouling modeling and prediction approach for heat exchangers using deep learning. Int J Heat Mass Transf 159:120112. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.120112

    Article  Google Scholar 

  141. Ahn B, Kim J, Choi B (2019) Artificial intelligence-based machine learning considering flow and temperature of the pipeline for leak early detection using acoustic emission. Eng Fract Mech 210:381–392. https://doi.org/10.1016/J.ENGFRACMECH.2018.03.010

    Article  Google Scholar 

  142. Sadowski L (2014) Nikoo M (2014) Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm. Neural Comput Appl 257(25):1627–1638. https://doi.org/10.1007/S00521-014-1645-6

    Article  Google Scholar 

  143. Aláiz-Moretón H, Castejón-Limas M, Casteleiro-Roca JL et al (2019) A fault detection system for a geothermal heat exchanger sensor based on intelligent techniques. Sensors 19(12):2740. https://doi.org/10.3390/S19122740

  144. Sivaprakash M, Haribabu K, Sathish T et al (2020) Support vector machine for modelling and simulation of heat exchangers. Therm Sci 24:499–503. https://doi.org/10.2298/TSCI190419398M

    Article  Google Scholar 

  145. Zonta T, da Costa CA, da Rosa Righi R et al (2020) Predictive maintenance in the Industry 4.0: a systematic literature review. Comput Ind Eng 150:106889. https://doi.org/10.1016/J.CIE.2020.106889

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Chemical Engineering, University of Bahrain, Kingdom of Bahrain.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of this study. Hosni Ezuber wrote the first draft of the manuscript. The manuscript was edited and reviewed by S. M. Zakir Hossain. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. M. Zakir Hossain.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezuber, H., Zakir Hossain, S.M. A review of corrosion failures in shell and tube heat exchangers: roots and advanced counteractive. Heat Mass Transfer 59, 971–987 (2023). https://doi.org/10.1007/s00231-022-03301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03301-3

Navigation