Skip to main content

Experimental study on the overall heat transfer capability of the thin liquid film at different positions in the three-phase contact line area

Abstract

With the miniaturization and integration of electronic devices, the power density in electronic devices has increased significantly, putting forward higher requirements on the service life and stability of electronic devices. The micro-scale liquid cooling systems have played an essential role in the heat dissipation of microelectronic devices. In the micro-scale liquid cooling systems, when solid, liquid, and gas are in contact, a three-phase contact line area is formed. At the micro-nano scale, heat transfer in this area cannot be ignored. However, because of the small size of the three-phase contact line area, the experimental researches are mainly focused on the profile of the liquid thin film. Few experimental methods can easily measure the heat transfer capacity of the three-phase contact line area. In this study, we used the transient time-domain thermoreflectance (TDTR) technique, which has a satisfactory spatial and temporal resolution, to characterize the heat transfer capacity of the thin liquid film at different positions in the three-phase contact line area and established a heat transfer model for TDTR to measure the overall heat transfer coefficient of the thin liquid film. In addition, we used Wayner’s evaporation model of wetting film to verify the experimental results. The experimental results show that the overall heat transfer coefficient of the liquid film in the middle of the microgroove is much smaller than that at the edge, which has the same law as the theoretical calculation. The evaporating thin-film region’s measured overall heat transfer coefficient can reach ~ 650 kW/(m2·K). This study provides an idea for the experimental study of micro-nano-scale liquid film heat transfer and laid the foundation for revealing the heat and mass transport mechanism in the three-phase contact line area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Abbreviations

C v :

Volumetric heat capacity (J/(m3·K))

d :

Thickness (m)

e th :

Thermal effusivity (kw·s0.5/(m2·K))

\({h}_{\omega }\) :

Overall heat transfer coefficient (W/(m2·K))

G :

Interfacial thermal conductance (W/(m2·K))

k :

Thermal conductivity (W/(m·K))

P :

Total laser power reaching the sample (W)

q'':

Heat flux (W/m2)

R :

Reflectivity or amplitude signal

S :

Sensitivity

w :

1/E2 beam radius (m)

\(\overline{w }\) :

The weighted 1/e2 beam radius (m)

ω :

Angular frequency (rad/s)

FS:

Fused silica

l:

Liquid

References

  1. Ajaev VS, Kabov OA (2017) Heat and mass transfer near contact lines on heated surfaces. Int J Heat Mass Transf 108:918–932

    Article  Google Scholar 

  2. Stephan P, Hammer J (1994) A new model for nucleate boiling heat-transfer. Warme Und Stoffubertragung-Thermo Fluid Dyn 30(2):119–125

    Article  Google Scholar 

  3. Stephan PC, Busse CA (1992) Analysis of the heat-transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transf 35(2):383–391

    Article  Google Scholar 

  4. Kim J (2007) Spray cooling heat transfer: The state of the art. Int J Heat Fluid Flow 28(4):753–767

    Article  Google Scholar 

  5. Wang H, Garimella SV, Murthy JY (2007) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transf 50(19–20):3933–3942

    Article  MATH  Google Scholar 

  6. Holm FW, Goplen SP (1979) Heat-transfer in the meniscus thin-film transition region. Int J Heat Mass Transf 101(3):543–547

  7. Schonberg JA, Wayner PC (1992) Analytical solution for the integral contact line evaporative heat sink. J Thermophys Heat Trans 6(1):128–134

  8. Wee S-K, Kihm KD, Pratt DM, Allen JS (2006) Microscale heat and mass transport of evaporating thin film of binary mixture. J Thermophys Heat Transfer 20(2):320–326

    Article  Google Scholar 

  9. Ma HB, Cheng P, Borgmeyer B, Wang YX (2007) Fluid flow and heat transfer in the evaporating thin film region. Microfluid Nanofluid 4(3):237–243

    Article  Google Scholar 

  10. Ma HB, Peterson GP (1997) Temperature variation and heat transfer in triangular grooves with an evaporating film. J Thermophys Heat Trans 11(1):90–97

  11. Sait HH, Demsky SM, Ma H (2008) Thermal conductivity and operating temperature effect on the interline region in a micro/miniature heat pipe. In: Micro/Nanoscale Heat Transfer International Conference. Tainan, Taiwan

  12. Yamada Y, Nishikawara M, Yanada H, Ueda Y (2019) Predicting the performance of a loop heat pipe considering evaporation from the meniscus at the three-phase contact line. Therm Sci Eng Prog 11:125–132

    Article  Google Scholar 

  13. Cook R, Tung CY, Wayner PC (1981) Use of scanning micro-photometer to determine the evaporative heat-transfer characteristics of the contact line region. J Heat Transfer-T Asme 103(2):325–330

  14. Wayner PC, Tung CY, Tirumala M, Yang JH (1985) Experimental-study of evaporation in the contact line region of a thin-film of hexane. J Heat Transfer-T Asme 107(1):182–189

  15. Dasgupta S, Plawsky JL, Wayner PC (1995) Interfacial force-field characterization in a constrained vapor bubble thermosiphon. AIChE J 41(9):2140–2149

    Article  Google Scholar 

  16. Ojha M, Chatterjee A, Dalakos G, Wayner PC, Plawsky JL (2010) Role of solid surface structure on evaporative phase change from a completely wetting corner meniscus. Phys Fluids 22(5)

  17. Truong JG, Wayner PC (1987) Effects of capillary and vanderwaals dispersion forces on the equilibrium profile of a wetting liquid - theory and experiment. J Chem Phys 87(7):4180–4188

  18. Dasgupta S, Schonberg JA, Wayner PC (1993) Investigation of an evaporating extended meniscus based on the augmented young-laplace equation. J Heat Transfer-T Asme 115(1):201–208

    Article  Google Scholar 

  19. Bigham S, Moghaddam S (2015) Microscale study of mechanisms of heat transfer during flow boiling in a microchannel. Int J Heat Mass Transf 88:111–121

    Article  Google Scholar 

  20. Dhillon NS, Buongiorno J, Varanasi KK (2015) Critical heat flux maxima during boiling crisis on textured surfaces. Nat Commun 6

  21. Stephan P, Hohmann C, Kern J (2002) Microscale measurement of wall-temperature distribution at a single vapor bubble for evaluation of a nucleate boiling model. In: ElGenk MS (ed) Space Technology and Applications International Forum-Staif 2002. AIP Conference Proceedings, pp 163–171

  22. Ge Z, Cahill DG, Braun PV (2006) Thermal conductance of hydrophilic and hydrophobic interfaces. Phys Rev Lett 96(18):186101

  23. Tian Z, Marconnet A, Chen G (2015) Enhancing solid-liquid interface thermal transport using self-assembled monolayers. Appl Phys Lett 106(21)

  24. Putnam SA, Briones AM, Ervin JS, Hanchak MS, Byrd LW, Jones JG (2012) Interfacial heat transfer during microdroplet evaporation on a laser heated surface. Int J Heat Mass Transf 55(23–24):6307–6320

    Article  Google Scholar 

  25. Mehrvand M, Putnam SA (2018) Transient and local two-phase heat transport at macro-scales to nano-scales. Commun Phys 1(1)

  26. Chang G, Sun F, Wang L, Che Z, Wang X, Wang J, Kim MJ, Zhang H (2019) Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications. ACS Appl Mater Interfaces 11(29):26507–26517

  27. Schmidt AJ (2008) Optical characterization of thermal transport from the nanoscale to the macroscale. Mechanical Engineering, Massachusetts Institute of Technology

  28. Cahill DG (2004) Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev Sci Instrum 75(12):5119–5122

    Article  Google Scholar 

  29. Mehrvand M, Putnam SA (2018) Transient and local two-phase heat transport at macro-scales to nano-scales. Commun Phys 1

  30. Mehrvand M, Putnam SA (2017) Probing the local heat transfer coefficient of water-cooled microchannels using time-domain thermoreflectance. J Heat Transfer 139(11)

  31. Lu J, Yuan K, Sun F, Zheng K, Zhang Z, Zhu J, Wang X, Zhang X, Zhuang Y, Ma Y, Cao X, Zhang J, Tang D (2019) Self-assembled monolayers for the polymer/semiconductor interface with improved interfacial thermal management. ACS Appl Mater Interfaces 11(45):42708–42714

  32. Chea Z, Wang X, Guo C, Sun F (2021) A complex signal fitting method for thermal property determination of tdtr measurement. ES Energy Environ 11:7

  33. Gundrum BC, Cahill DG, Averback RS (2005) Thermal conductance of metal-metal interfaces. Phys Rev B 72(24):245426

    Article  Google Scholar 

  34. Olson JR, Pohl RO, Vandersande JW, Zoltan A, Anthony TR, Banholzer WF (1993) Thermal conductivity of diamond between 170 and 1200 K and the isotope effect. Phys Rev B Condens Matter 47(22):14850–14856

  35. Swanson LW, Herdt GC (1992) Model of the ewaporating meniscus in a capillary tube. J Heat Transfer 114:8

    Article  Google Scholar 

  36. Wang H, Garimella SV, Murthy JY (2008) An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. Int J Heat Mass Transf 51(25–26):6317–6322

    Article  MATH  Google Scholar 

  37. Yan C, Ma HB (2013) Analytical solutions of heat transfer and film thickness in thin-film evaporation. J Heat Transfer 135(3)

  38. Kandlikar SG, Kuan WK, Mukherjee A (2005) Experimental study of heat transfer in an evaporating meniscus on a moving heated surface. J Heat Transfer 127(3):244–252

    Article  Google Scholar 

  39. Ibrahem K, Abd Rabbo MF, Gambaryan-Roisman T, Stephan P (2010) Experimental investigation of evaporative heat transfer characteristics at the 3-phase contact line. Exp Therm Fluid Sci 34(8):1036–1041

  40. Ma HB, Peterson GP (1996) Experimental investigation of the maximum heat transport in triangular grooves. J Heat Transfer-T ASME 118(3):7

    Google Scholar 

  41. Wayner PC Jr, Kao YK, Lacroix LV (1976) The interline heat-transfer coefficient of an evaporating wetting film. Int J Heat Mass Transfer 19:6

  42. Schrage RW (1953) A theoretical study of interface mass transfer. Columbia University

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51876203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Yuyan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Che, Z., Wang, T., Sun, F. et al. Experimental study on the overall heat transfer capability of the thin liquid film at different positions in the three-phase contact line area. Heat Mass Transfer 59, 255–268 (2023). https://doi.org/10.1007/s00231-022-03254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03254-7

Keywords

  • Three-phase contact line
  • Time-domain thermoreflectance
  • Nano-scale heat transfer
  • Thin liquid film
  • Evaporation