Skip to main content
Log in

Simulating of non-premixed turbulent combustion using a presumed probability density function method

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A Reynolds Averaged Navier–Stokes (RANS) modelling of a non-premixed turbulent CH4/H2/N2 flame is considered. This turbulent flame is handled as an ensemble of laminar diffusion flamelets according to the laminar flamelet concept. The Favre-averaged governing equations of momentum, mass, and energy in the turbulent field were solved in conjunction with the standard k − ε turbulence model. The coupling between the chemistry and turbulence is achieved by a presumed Probability Density Function (presumed-PDF). The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted. The comparison between the simulation results and the experimental data of velocity, temperature and mass fractions of species (CH4, H2, N2, H2O, CO2, O2 and CO) along the centreline as well as the radial position of x/D = 5, 40 are presented. The effect of the constant of the model k-ε ‘Cɛ1’ and the turbulent Schmidt number ‘Sct’ on the accuracy of the numerical solution is highlighted. The results show that the present approach remains an accurate promising alternative to the LES and DNS approaches for the modelling of the turbulent combustion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. El-Mahallawy F, Habik SED (2002) Fundamentals and technology of combustion. Elsevier Science

  2. Mansour MS, Chung SH (2015) Turbulent non-premixed flames stabilized on double-slit curved wall-jet burner with simultaneous OH-planar laser-induced fluorescence and particle image velocimetry measurements. Combust Sci Technol 187(9):1408–1424. https://doi.org/10.1080/00102202.2015.1042103

    Article  Google Scholar 

  3. Zhang K, Ghobadian A, Nouri JM (2017) Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor. Appl Therm Eng 110:910–920. https://doi.org/10.1016/j.applthermaleng.2016.08.223

    Article  Google Scholar 

  4. Lalmi D, Hadef R (2017) Numerical study of the swirl direction effect at the turbulent diffusion flame characteristics. Int J Heat Technol 35(3):520–528. https://doi.org/10.18280/ijht.350308

    Article  Google Scholar 

  5. Askari-Sardhai A, Moss JB, Liew SK (1985) Flamelet Modelling of Propane-Air Chemistry in Turbulent Non-Premixed Combustion. Combust Sci Technol 44(1–2):89–95. https://doi.org/10.1080/00102208508960295

    Article  Google Scholar 

  6. Snegirev A, Markus E, Kuznetsov E, Harris J, Wu T (2018) On soot and radiation modeling in buoyant turbulent diffusion flames. Heat Mass Transf und Stoffuebertragung 54(8):2275–2293. https://doi.org/10.1007/s00231-017-2198-x

    Article  Google Scholar 

  7. Yan ZH (2007) Large eddy simulations of a turbulent thermal plume. Heat Mass Transf und Stoffuebertragung 43(6):503–514. https://doi.org/10.1007/s00231-006-0127-5

    Article  Google Scholar 

  8. Zhou X, Luo KH, Williams JJR (2001) Numerical studies on vortex structures in the near-field of oscillating diffusion flames. Heat Mass Transf und Stoffuebertragung 37(2–3):101–110. https://doi.org/10.1007/s002310000166

    Article  Google Scholar 

  9. Jones WP (2002) Large Eddy Simulation of turbulent combustion processes. Comput Phys Commun 147(1–2):533–537. https://doi.org/10.1016/S0010-4655(02)00330-2

    Article  MATH  Google Scholar 

  10. Di Mare F, Jones WP, Menzies KR (2004) Large eddy simulation of a model gas turbine combustor. Combust Flame 137(3):278–294. https://doi.org/10.1016/j.combustflame.2004.01.008

    Article  Google Scholar 

  11. Wu J, Wang Z, Bai X, Sun M, Wang H (2016) The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model. Acta Astronaut 127:375–383. https://doi.org/10.1016/j.actaastro.2016.06.021

    Article  Google Scholar 

  12. Bouras F, Khaldi F (2016) Computational modeling of thermodynamic irreversibilities in turbulent non-premixed combustion. Heat Mass Transf und Stoffuebertragung 52(4):671–681. https://doi.org/10.1007/s00231-015-1587-2

    Article  Google Scholar 

  13. Tabet F, Sarh B, Birouk M, Gökalp I (2012) The near-field region behaviour of hydrogen-air turbulent non-premixed flame. Heat Mass Transf und Stoffuebertragung 48(2):359–371. https://doi.org/10.1007/s00231-011-0889-2

    Article  Google Scholar 

  14. Tabet F, Sarh B, Gökalp I (2011) Investigation of turbulence models capability in predicting mixing in the near field region of hydrogen-hydrocarbon turbulent non-premixed flame. Heat Mass Transf und Stoffuebertragung 47(4):397–406. https://doi.org/10.1007/s00231-010-0725-0

    Article  Google Scholar 

  15. Sadiki A et al (2017) Analyzing the effects of turbulence and multiphase treatments on oxy-coal combustion process predictions using LES and RANS. Chem Eng Sci 166:283–302. https://doi.org/10.1016/j.ces.2017.03.015

    Article  Google Scholar 

  16. Chan WL, Ihme M (2017) Flamelet regime characterization for non-premixed turbulent combustion simulations. Combust Flame 186:220–235. https://doi.org/10.1016/j.combustflame.2017.08.003

    Article  Google Scholar 

  17. Ihme M, Cha CM, Pitsch H (2005) Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc Combust Inst 30(1):793–800. https://doi.org/10.1016/j.proci.2004.08.260

    Article  Google Scholar 

  18. Dhuchakallaya I, Watkins AP (2009) Self-ignition of diesel spray combustion. Heat Mass Transf und Stoffuebertragung 45(12):1627–1635. https://doi.org/10.1007/s00231-009-0537-2

    Article  Google Scholar 

  19. De Goey LPH, Ten Thije Boonkkamp JHM (1999) A flamelet description of premixed laminar flames and the relation with flame stretch. Combust Flame 119(3):253–271. https://doi.org/10.1016/S0010-2180(99)00052-8

  20. Abdel-Raheem MA, Ibrahim SS, Malalasekera W, Masri AR (2015) Large Eddy simulation of hydrogen-air premixed flames in a small scale combustion chamber. Int J Hydrogen Energy 40(7):3098–3109. https://doi.org/10.1016/j.ijhydene.2014.12.042

    Article  Google Scholar 

  21. Haworth DC, Drake MC, Blint RJ (1988) Stretched Laminar Flamelet Modeling of a Turbulent Jet Diffusion Flame. Combust Sci Technol 60(4–6):287–318. https://doi.org/10.1080/00102208808923989

    Article  Google Scholar 

  22. Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci 10(3):319–339. https://doi.org/10.1016/0360-1285(84)90114-X

    Article  Google Scholar 

  23. Shan F, Zhang D, Hou L, Fang H, Zhang H, Zhang J (2021) An improved flamelet/progress variable modeling for supersonic combustion. Int J Hydrogen Energy 46(5):4485–4495. https://doi.org/10.1016/j.ijhydene.2020.10.225

    Article  Google Scholar 

  24. Hashemi SA, Fattahi A, Sheikhzadeh GA, Mehrabian MA (2012) The effect of oxidant flow rate on a coaxial oxy-fuel flame. Heat Mass Transf und Stoffuebertragung 48(9):1615–1626. https://doi.org/10.1007/s00231-012-1008-8

    Article  Google Scholar 

  25. Elattar HF, Specht E, Fouda A, Bin-Mahfouz AS (2016) CFD modeling using PDF approach for investigating the flame length in rotary kilns. Heat Mass Transf und Stoffuebertragung 52(12):2635–2648. https://doi.org/10.1007/s00231-016-1768-7

    Article  Google Scholar 

  26. Khaldi N, Chouari Y, Mhiri H, Bournot P (2016) CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized-coal furnace. Heat Mass Transf und Stoffuebertragung 52(9):1881–1890. https://doi.org/10.1007/s00231-015-1710-4

    Article  Google Scholar 

  27. Ben Sik Ali A, Kriaa W, Mhiri H, Bournot P (2012) Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber. Heat Mass Transf und Stoffuebertragung 48(5):779–788. https://doi.org/10.1007/s00231-011-0932-3

  28. Gürtürk M, Oztop HF, Pambudi NA (2018) CFD analysis of a rotary kiln using for plaster production and discussion of the effects of flue gas recirculation application. Heat Mass Transf und Stoffuebertragung 54(10):2935–2950. https://doi.org/10.1007/s00231-018-2336-0

    Article  Google Scholar 

  29. Li Z, Cuoci A, Sadiki A, Parente A (2017) Comprehensive numerical study of the Adelaide Jet in Hot-Coflow burner by means of RANS and detailed chemistry. Energy 139:555–570. https://doi.org/10.1016/j.energy.2017.07.132

    Article  Google Scholar 

  30. Frassoldati A, Sharma P, Cuoci A, Faravelli T, Ranzi E (2010) Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow. Appl Therm Eng 30(4):376–383. https://doi.org/10.1016/j.applthermaleng.2009.10.001

    Article  Google Scholar 

  31. OpenFOAM (2021) https://www.openfoam.com/

  32. Law WP, Gimbun J (2019) Thermal performance enhancement of non-premixed syngas combustion in a partial combustion unit by winged nozzle: Experimental and CFD study. Energy 182:148–158. https://doi.org/10.1016/j.energy.2019.06.040

    Article  Google Scholar 

  33. Okafor EC et al (2018) Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combust Flame 187:185–198. https://doi.org/10.1016/j.combustflame.2017.09.002

    Article  Google Scholar 

  34. Patankar S (1980). Numerical heat transfer and fluid flow. https://doi.org/10.1016/j.watres.2009.11.010

    Article  Google Scholar 

  35. Liu S (2016) CFD with OpenSource software Implementation of a Complete Wall Function for the Standard k − Turbulence. Proc CFD with OpenSource Softw 2016

  36. Janicka J, Peters N (1982) Using a Pdf Transport Equation. Ninet Symp Combust Combust Inst 367–374

  37. Bergmann V, Meier W, Wolff D, Stricker W (1998) Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Appl Phys B Lasers Opt 66(4):489–502. https://doi.org/10.1007/s003400050424

    Article  Google Scholar 

  38. Namer I, Ötügen MV (1988) Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers. Exp Fluids 6(6):387–399. https://doi.org/10.1007/BF00196484

    Article  Google Scholar 

  39. Schadow KC, Gutmark E, Koshigoe S, Wilson KJ (1989) Combustion-related shear-flow dynamics in elliptic supersonic jets. AIAA J 27(10):1347–1353. https://doi.org/10.2514/3.10270

    Article  Google Scholar 

  40. Liew SK, Bray KNC, Moss JB (1981) A Flamelet Model of Turbulent Non-Premixed Combustion. Combust Sci Technol 27(1–2):69–73. https://doi.org/10.1080/00102208108946973

    Article  Google Scholar 

  41. Natarajan J, Lieuwen T, Seitzman J (2007) Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure. Combust Flame 151(1–2):104–119. https://doi.org/10.1016/j.combustflame.2007.05.003

    Article  Google Scholar 

  42. Kim SH, Huh KY (2002) Use of the conditional moment closure model to predict NO formation in a turbulent CH4/H2 flame over a bluff-body. Combust Flame 130(1–2):94–111. https://doi.org/10.1016/S0010-2180(02)00367-X

    Article  Google Scholar 

  43. Lilleberg B, Christ D, Ertesvåg IS, Rian KE, Kneer R (2013) “Numerical simulation with an extinction database for use with the eddy dissipation concept for turbulent combustion”, Flow. Turbul Combust 91(2):319–346. https://doi.org/10.1007/s10494-013-9463-y

    Article  Google Scholar 

  44. Hu E et al (2015) Laminar flame speeds and ignition delay times of methane-air mixtures at elevated temperatures and pressures. Fuel 158:1–10. https://doi.org/10.1016/j.fuel.2015.05.010

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Future Optimization Ideas Inc. for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hafid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafid, M., Hebbir, N., Lacroix, M. et al. Simulating of non-premixed turbulent combustion using a presumed probability density function method. Heat Mass Transfer 59, 81–93 (2023). https://doi.org/10.1007/s00231-022-03238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03238-7

Navigation