Skip to main content
Log in

Start-up and damping of a standing wave thermoacoustic engine: model development and experimental evaluation

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper puts forward a transient numerical model for thermoacoustic energy convertors using Rott’s equations combined with electrical circuit analogy. To enhance the accuracy of model outcomes, the lumped element values are updated at each time step as a function of temperature. Accordingly, a nonlinear temperature distribution is obtained along the hot core. The developed numerical approach is in line with the experimental results of a standing wave thermoacoustic engine. Based on this method, the temperature variations along the stack and the impact of stack material on start-up time and onset temperature are numerically investigated. Additionally, the onset temperature profiles are calculated and presented comparatively for the numerical and experimental results. The start-up time of spontaneous oscillations is calculated for the standing wave system. Consequently, the best geometry that quickly reaches sustained oscillations can be selected using this model. Examining the temperature profile during the start-up and damping process highlights a temperature difference between these two processes. This is calculated as 35 K in the numerical solution and measured as 38 K in the experiment for a standing wave engine. Observations show that using a material with lower thermal conductivity in the stack section can reduce the onset-damping temperature difference. The novel approach described here shows potential in capturing the onset-damping behavior of thermoacoustic systems efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Area, m2

Cp :

Specific isobaric heat capacity, J/K.mol

E :

Acoustic power, W

F(x) :

Energy flow, W

f :

Spatially averaged thermoviscous function

G(x) :

Thermoacoustic pumping effect, W

g :

Controlled source coefficient

Im[] :

Imagine part of parameter

k :

Thermal conductivity coefficient, W/m2K

p :

Amplitude of oscillating pressure, Pa

P :

Mean pressure, Pa

Q :

Heat power, W

R :

Universal gas constant, J/K.mol

Re[] :

Real part of parameter

T :

Temperature, K

U :

Amplitude of oscillating volume flow rate, m3/s

V :

Volume, m3

DR:

Drive ratio

γ :

Ratio of specific heat

ρ :

Average density of gas, kg/m3

δ :

Viscous penetration depth, m

σ :

Prandtl number

ω :

Rotational frequency, rad

μ :

Dynamic viscosity, kg. s/m

a :

Ambient

in :

Input

i :

Spatial discretization node numerator

out :

Output

v :

Viscous

κ :

Thermal

p :

Isobaric

gas :

Related to the gas

solid :

Related to the solid media

m :

Mean

norm:

Normalized parameter

o :

Onset period

d :

Damping period

e :

Error

~:

Complex conjugate

n :

Time step

References

  1. Zare S, Tavakolpour-Saleh AR (2020) Free piston Stirling engines: A review. Int J Energy Res 44(7):5039–5070. https://doi.org/10.1002/er.4533

    Article  Google Scholar 

  2. Sarkar J, Bhattacharyya S (2012) Application of graphene and graphene-based materials in clean energy-related devices Minghui. Arch Thermodyn 33(4):23–40

    Article  Google Scholar 

  3. Hasegawa S, Yamaguchi T, Oshinoya Y (2013) A thermoacoustic refrigerator driven by a low temperature-differential, high-efficiency multistage thermoacoustic engine. Appl Therm Eng 58(1–2):394–399. https://doi.org/10.1016/j.applthermaleng.2013.04.030

    Article  Google Scholar 

  4. Sharify EM, Hasegawa S (2017) Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine. Appl Therm Eng 113:791–795. https://doi.org/10.1016/j.applthermaleng.2016.11.021

    Article  Google Scholar 

  5. Wang K et al (2016) Acoustic matching of a traveling-wave thermoacoustic electric generator. Appl Therm Eng 102:272–282. https://doi.org/10.1016/j.applthermaleng.2016.03.106

    Article  Google Scholar 

  6. Chen G, Krishan G, Yang Y, Tang L, Mace B (2020) Numerical investigation of synthetic jets driven by thermoacoustic standing waves. Int J Heat Mass Transf 146:118859. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118859

    Article  Google Scholar 

  7. Bou Nader W, Chamoun J, Dumand C (2020) Thermoacoustic engine as waste heat recovery system on extended range hybrid electric vehicles. Energy Convers Manag 215:112912. https://doi.org/10.1016/j.enconman.2020.112912

    Article  Google Scholar 

  8. Bahrami M, Ommi F (2021) Developing an augmented onset model for a thermoacoustically-driven, pulse tube cryocooler. Sustain Energy Technol Assess 47:101402. https://doi.org/10.1016/j.seta.2021.101402

    Article  Google Scholar 

  9. Qiu L, Chen G, Jiang N (2002) Optimum packing factor of the stack in a standing-wave thermoacoustic prime mover. Int J Energy Res 26(8):729–735. https://doi.org/10.1002/er.800

    Article  Google Scholar 

  10. Jin T, Yang R, Liu Y, Tang K (2016) Thermodynamic characteristics during the onset and damping processes in a looped thermoacoustic prime mover. Appl Therm Eng 100:1169–1172. https://doi.org/10.1016/j.applthermaleng.2016.02.115

    Article  Google Scholar 

  11. Tan J, Wei J, Jin T (2019) Onset and damping characteristics of a closed two-phase thermoacoustic engine. Appl Therm Eng 160:114086. https://doi.org/10.1016/j.applthermaleng.2019.114086

    Article  Google Scholar 

  12. He YL, Ke HB, Cui FQ, Tao WQ (2013) Explanations on the onset and damping behaviors in a standing-wave thermoacoustic engine. Appl Therm Eng 58(1–2):298–304. https://doi.org/10.1016/j.applthermaleng.2013.04.031

    Article  Google Scholar 

  13. Bahrami M, Ommi F (2022) Performance of a multi-stage thermoacoustically-driven pulse tube cryocooler: Uncertainty quantification and sensitivity analysis. Appl Therm Eng 200:117653. https://doi.org/10.1016/j.applthermaleng.2021.117653

    Article  Google Scholar 

  14. Yahya SG, Mao X, Jaworski AJ (2017) Experimental investigation of thermal performance of random stack materials for use in standing wave thermoacoustic refrigerators Étude expérimentale de la performance thermique de stacks en matériaux aléatoires utilisés dans des réfrigérateurs thermoacou. Int J Refrig 75:52–63. https://doi.org/10.1016/j.ijrefrig.2017.01.013

    Article  Google Scholar 

  15. Shen C, Li HX, Zhang DW, Yu P, Pan N, Wang SF (2016) Study on the heat transfer characteristic of solar powered thermoacoustic prime mover at different tilted angles. Appl Therm Eng 103:1126–1134. https://doi.org/10.1016/j.applthermaleng.2016.04.096

    Article  Google Scholar 

  16. Shen C, He Y, Li Y, Ke H, Zhang D, Liu Y (2009) Performance of solar powered thermoacoustic engine at different tilted angles. Appl Therm Eng 29(13):2745–2756. https://doi.org/10.1016/j.applthermaleng.2009.01.008

    Article  Google Scholar 

  17. Chen G, Tang L, Mace BR (2018) Theoretical and experimental investigation of the dynamic behaviour of a standing-wave thermoacoustic engine with various boundary conditions. Int J Heat Mass Transf 123:367–381. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.121

    Article  Google Scholar 

  18. Zorgnotti V, Penelet G, Poignand G, Garrett SL (2018) Prediction of limit cycle amplitudes in thermoacoustic engines by means of impedance measurements. J Appl Phys 124(15):154901. https://doi.org/10.1063/1.5040906

    Article  Google Scholar 

  19. Qiu LM et al (2013) Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen. Chinese Sci Bull 58(11):1325–1330. https://doi.org/10.1007/s11434-012-5214-z

    Article  Google Scholar 

  20. Chen G, Tang L, Mace BR (2019) Modelling and analysis of a thermoacoustic-piezoelectric energy harvester. Appl Therm Eng 150:532–544. https://doi.org/10.1016/j.applthermaleng.2019.01.025

    Article  Google Scholar 

  21. Kuzuu K, Hasegawa S (2021) Numerical investigation of a thermoacoustic engine core via heat transfer calculations coupled with acoustic field analyses. Appl Therm Eng 183:116223. https://doi.org/10.1016/j.applthermaleng.2020.116223

    Article  Google Scholar 

  22. Guédra M, Bannwart FC, Penelet G, Lotton P (2015) Parameter estimation for the characterization of thermoacoustic stacks and regenerators. Appl Therm Eng 80:229–237. https://doi.org/10.1016/j.applthermaleng.2015.01.058

    Article  Google Scholar 

  23. Swift GW (2017) Thermoacoustics. Springer International Publishing, Cham

    Book  Google Scholar 

  24. Wang K et al (2015) Numerical simulation on onset characteristics of traveling-wave thermoacoustic engines based on a time-domain network model. Int J Therm Sci 94:61–71. https://doi.org/10.1016/j.ijthermalsci.2015.02.010

    Article  Google Scholar 

  25. Xiao JH (1995) Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem. Cryogenics (Guildf) 35(1):15–19. https://doi.org/10.1016/0011-2275(95)90419-G

    Article  Google Scholar 

  26. Piccolo A, Pistone G (2006) Estimation of heat transfer coefficients in oscillating flows: The thermoacoustic case. Int J Heat Mass Transf 49(9–10):1631–1642. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.009

    Article  MATH  Google Scholar 

  27. Marx D, Blanc-benon P (2005) Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate. Cryogenics 45:163–172. https://doi.org/10.1016/j.cryogenics.2004.08.007

    Article  Google Scholar 

  28. Nouh M, Aldraihem O, Baz A (2014) Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters. J Acoust Soc Am 135(2):669–678. https://doi.org/10.1121/1.4861236

    Article  Google Scholar 

  29. Guan Y, He W, Murugesan M, Li Q, Liu P, Li LKB (2019) Control of self-excited thermoacoustic oscillations using transient forcing, hysteresis and mode switching. Combust Flame 202:262–275. https://doi.org/10.1016/j.combustflame.2019.01.013

    Article  Google Scholar 

  30. Li X, Zhao D, Li X (2018) Effects of background noises on nonlinear dynamics of a modelled thermoacoustic combustor. J Acoust Soc Am 143(1):60–70. https://doi.org/10.1121/1.5020059

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alireza Moradi and Mohsen Bahrami under the supervision of Fathollah Ommi and Zoheir Saboohi.

Corresponding author

Correspondence to Fathollah Ommi.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Alireza Moradi and Mohsen Bahrami contributed equally to this work and should be considered co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Bahrami, M., Ommi, F. et al. Start-up and damping of a standing wave thermoacoustic engine: model development and experimental evaluation. Heat Mass Transfer 58, 2175–2193 (2022). https://doi.org/10.1007/s00231-022-03235-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03235-w

Navigation