Skip to main content

Advertisement

Log in

Thermophysical characterization and melting heat transfer analysis of an organic phase change material dispersed with GNP- Ag hybrid nanoparticles

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the experimental study presented here, the effectiveness of using hybrid nanoparticles of Graphene nanoplatelet (GNP) aggregates and Silver (Ag) nanoparticles as a thermal conductivity enhancer (TCE) in an organic solid–liquid phase change material (PCM) is examined. An in-situ reduction method was used to synthesize the GNP-Ag hybrid nanoparticles, and these were characterized by SEM, TEM, EDS, and XRD. PCM composites were prepared by embedding different concentrations of GNP and GNP-Ag hybrid nanoparticles into a paraffin-based PCM. The effective thermophysical properties of the composite PCMs, such as specific heats, latent heats of solidification, and thermal conductivities, were determined using a T-History analysis from the Time–Temperature and Temperature-Enthalpy curves. The study finds that the Base PCM's effective thermal conductivity was augmented by 52% with 1 wt.% of GNP-Ag hybrid nanoparticles. In comparison, the increase was only 27% when dispersed with the same amount of GNP alone. A heat transfer analysis was also conducted in a cylindrical PCM enclosure to investigate the effect of these nano-additives in the natural convection-dominated melting process of the PCM. An investigation on the dynamic viscosity of NEPCMs and quantitative analysis of Grashof number confirmed that GNP-Ag nanoparticles outperform GNP in the melting heat transfer of the PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data transparency

All data and materials support their published claims and comply with the field standards.

Code availability

Not Applicable.

Abbreviations

At :

Convective surface area of the test tube (m2)

Α:

Coefficient of thermal expansion (-K)

Cp :

Specific heat (J/g K)

g:

Acceleration due to gravity (m/s2)

Gr:

Grashof Number

h:

Heat transfer coefficient (W/m2K)

H:

Height of the interface (m)

I:

Area under the time–temperature curve (Ks)

k:

Thermal conductivity (W/mK)

L:

Latent heat of solidification (J/g)

m:

Mass (g)

µ:

Dynamic viscosity (mPa.s)

ν:

Kinematic viscosity (m2/s)

ϕ:

Volume fraction

R:

Radius of the test tube (m)

T:

Temperature (K)

tf :

Time of full solidification (s)

ρ:

Density (g/cm3)

u:

Uncertainty

b:

Base

l:

Liquid

m:

Melting

nf:

Nanofluid

o:

Onset

pcm:

Phase change material

r:

Reference

Rel:

Relative

s:

Solid

t:

Test tube

T:

Temperature

Ti :

Initial temperature

w:

Water

∞:

Ambient

DAS:

Digital Acquisition System

DSC:

Differential Scanning Calorimetry

EDS:

Energy Dispersive Spectroscopy

GNP:

Graphene nanoplatelets

NEPCM:

Nano-enhanced phase change materials

PCM:

Phase change materials

SEM:

Scanning Electron Microscope

TC:

Thermocouples

TCE:

Thermal conductivity enhancers

TEM:

Transmission Electron Microscope

TPS:

Transient Planar Source

XRD:

X-ray Diffraction

References

  1. Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742. https://doi.org/10.1016/j.rser.2017.10.002

    Article  Google Scholar 

  2. Shao J, Darkwa J, Kokogiannakis G (2015) Review of phase change emulsions (PCMEs) and their applications in HVAC systems. Energy Build 94:200–217. https://doi.org/10.1016/j.enbuild.2015.03.003

    Article  Google Scholar 

  3. Teggar M, Arıcı M, Selçuk M, Seyed M, Mousavi S, Hakeem A (2021) A comprehensive review of micro / nano enhanced phase change materials. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10808-0

    Article  Google Scholar 

  4. Yang L, nan Huang J, Zhou Z (2020) Thermophysical properties and applications of nano-enhanced PCMs: An update review, Energy Convers. Manag. 214: 112876. https://doi.org/10.1016/j.enconman.2020.112876

  5. Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC (2015) A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag 95:69–89. https://doi.org/10.1016/j.enconman.2015.02.028

    Article  Google Scholar 

  6. Jiang G, Huang J, Fu Y, Cao M, Liu M (2016) Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management. Appl Therm Eng 108:1119–1125. https://doi.org/10.1016/j.applthermaleng.2016.07.197

    Article  Google Scholar 

  7. Nižetić S, Jurčević M, Arıcı M, Arasu AV, Xie G (2020) Nano-enhanced phase change materials and fluids in energy applications: A review, Renew. Sustain. Energy Rev. 129. https://doi.org/10.1016/j.rser.2020.109931

  8. Sahoo SK, Das MK, Rath P (2016) Application of TCE-PCM based heat sinks for cooling of electronic components: A review. Elsevier. https://doi.org/10.1016/j.rser.2015.12.238

    Article  Google Scholar 

  9. Chintakrinda K, Weinstein RD, Fleischer AS (2011) International Journal of Thermal Sciences A direct comparison of three different material enhancement methods on the transient thermal response of paraf fi n phase change material exposed to high heat fl uxes. Int J Therm Sci 50:1639–1647. https://doi.org/10.1016/j.ijthermalsci.2011.04.005

    Article  Google Scholar 

  10. Teng TP, Yu CC (2012) Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett 7:1–10. https://doi.org/10.1186/1556-276X-7-611

    Article  Google Scholar 

  11. Yu ZT, Fang X, Fan LW, Wang X, Xiao YQ, Zeng Y, Xu X, Hu YC, Cen KF (2013) Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon N Y 53:277–285. https://doi.org/10.1016/j.carbon.2012.10.059

    Article  Google Scholar 

  12. Ola O, Chen Y, Zhu Y (2019) Solar Energy Materials and Solar Cells Three-dimensional carbon foam nanocomposites for thermal energy storage. Sol Energy Mater Sol Cells 191:297–305. https://doi.org/10.1016/j.solmat.2018.11.037

    Article  Google Scholar 

  13. Fan LW, Zhu ZQ, Zeng Y, Lu Q, Yu ZT (2014) Heat transfer during melting of graphene-based composite phase change materials heated from below. Int J Heat Mass Transf 79:94–104. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.001

    Article  Google Scholar 

  14. Fang X, Fan LW, Ding Q, Wang X, Yao XL, Hou JF, Yu ZT, Cheng GH, Hu YC, Cen KF (2013) Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. Energy Fuels 27:4041–4047. https://doi.org/10.1021/ef400702a

    Article  Google Scholar 

  15. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L (2010) Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 101:385–389. https://doi.org/10.1007/s10973-009-0472-y

    Article  Google Scholar 

  16. Parameshwaran R, Jayavel R, Kalaiselvam S (2013) Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim 114:845–858. https://doi.org/10.1007/s10973-013-3064-9

    Article  Google Scholar 

  17. Al Ghossein RM, Hossain MS, Khodadadi JM (2017) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. Int. J. Heat Mass Transf. 107, 697–711. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059

  18. Sarkar J, Ghosh P, Adil A (2015) A review on hybrid nanofluids: Recent research, development and applications. Renew Sustain Energy Rev 43:164–177. https://doi.org/10.1016/j.rser.2014.11.023

    Article  Google Scholar 

  19. Ranga Babu JA, Kumar KK, Srinivasa Rao S (2017) State-of-art review on hybrid nanofluids, Renew. Sustain. Energy Rev. 77, 551–565. https://doi.org/10.1016/j.rser.2017.04.040

  20. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi SN, Dahari M (2015) Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag 100:419–428. https://doi.org/10.1016/j.enconman.2015.05.023

    Article  Google Scholar 

  21. Xu B, Wang B, Zhang C, Zhou J (2017) Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials. Thermochim Acta 652:77–84. https://doi.org/10.1016/j.tca.2017.03.003

    Article  Google Scholar 

  22. Suresh Kumar KR, Parameshwaran R, Kalaiselvam S (2017) Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material. Sol. Energy Mater. Sol. Cells. 171, 148–160. https://doi.org/10.1016/j.solmat.2017.06.031

  23. Arshad A, Jabbal M, Yan Y (2020) Preparation and characteristics evaluation of mono and hybrid nano-enhanced phase change materials (NePCMs) for thermal management of microelectronics. Energy Convers Manag 205:112444. https://doi.org/10.1016/j.enconman.2019.112444

    Article  Google Scholar 

  24. Yinping Z, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas Sci Technol 10:201–205. https://doi.org/10.1088/0957-0233/10/3/015

    Article  Google Scholar 

  25. Radhakrishnan N, Thomas S, Sobhan CB (2020) Characterization of thermophysical properties of nano-enhanced organic phase change materials using T-history method. J Therm Anal Calorim 140:2471–2484. https://doi.org/10.1007/s10973-019-08976-1

    Article  Google Scholar 

  26. Zeng Y, Fan L, Xiao Y, Yu Z, Cen K (2013) International Journal of Heat and Mass Transfer An experimental investigation of melting of nanoparticle-enhanced phase change materials ( NePCMs ) in a bottom-heated vertical cylindrical cavity. Int J Heat Mass Transf 66:111–117. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.022

    Article  Google Scholar 

  27. Li L, Yu H, Wang X, Zheng S (2016) Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test. Energy Build 130:388–396. https://doi.org/10.1016/j.enbuild.2016.08.058

    Article  Google Scholar 

  28. Lázaro A, Günther E, Mehling H, Hiebler S, Marín JM, Zalba B (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17:2168–2174. https://doi.org/10.1088/0957-0233/17/8/016

    Article  Google Scholar 

  29. Günther E, Hiebler S, Mehling H, Redlich R (2009) Enthalpy of phase change materials as a function of temperature: Required accuracy and suitable measurement methods. Int J Thermophys 30:1257–1269. https://doi.org/10.1007/s10765-009-0641-z

    Article  Google Scholar 

  30. Kravvaritis ED, Antonopoulos KA, Tzivanidis C (2010) Improvements to the measurement of the thermal properties of phase change materials. Meas. Sci. Technol. 21. https://doi.org/10.1088/0957-0233/21/4/045103

  31. Marín JM, Zalba B, Cabeza LF, Mehling H (2003) Determination of enthalpy-temperature curves of phase change materials with the temperature-history method: Improvement to temperature dependent properties. Meas Sci Technol 14:184–189. https://doi.org/10.1088/0957-0233/14/2/305

    Article  Google Scholar 

  32. Stanković SB, Kyriacou PA (2013) Improved measurement technique for the characterization of organic and inorganic phase change materials using the T-history method. Appl Energy 109:433–440. https://doi.org/10.1016/j.apenergy.2013.01.079

    Article  Google Scholar 

  33. Zabalegui A, Lokapur D, Lee H (2014) Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance. Int J Heat Mass Transf 78:1145–1154. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.051

    Article  Google Scholar 

  34. Zhao CY, Tao YB, Yu YS (2020) Molecular dynamics simulation of nanoparticle effect on melting enthalpy of paraffin phase change material, Int. J. Heat Mass Transf. 150. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119382

  35. Putra N, Amin M, Kosasih EA, Luanto RA, Abdullah NA (2017) Characterization of the thermal stability of RT 22 HC / graphene using a thermal cycle method based on thermoelectric methods. Appl Therm Eng 124:62–70. https://doi.org/10.1016/j.applthermaleng.2017.06.009

    Article  Google Scholar 

  36. Ho CJ, Gao JY (2009) Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transf 36:467–470. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.015

    Article  Google Scholar 

  37. Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M (2014) A novel phase change material containing mesoporous silica nanoparticles for thermal storage: A study on thermal conductivity and viscosity. Int Commun Heat Mass Transf 56:114–120. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.005

    Article  Google Scholar 

  38. Bahiraei F, Fartaj A, Nazri GA (2017) Experimental and numerical investigation on the performance of carbon-based nanoenhanced phase change materials for thermal management applications. Energy Convers Manag 153:115–128. https://doi.org/10.1016/j.enconman.2017.09.065

    Article  Google Scholar 

  39. Ferrer G, Gschwander S, Solé A, Barreneche C, Fernández AI, Schossig P, Cabeza LF (2017) Empirical equation to estimate viscosity of paraffin. J Energy Storage 11:154–161. https://doi.org/10.1016/j.est.2017.03.002

    Article  Google Scholar 

  40. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571. https://doi.org/10.1063/1.1700493

    Article  Google Scholar 

  41. Irwan MAM, Azwadi CSN, Asako Y, Ghaderian J (2020) Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process. J Therm Anal Calorim 141:669–684. https://doi.org/10.1007/s10973-019-09038-2

    Article  Google Scholar 

  42. Utomo AT, Poth H, Robbins PT, Pacek AW (2012) Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf 55:7772–7781. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003

    Article  Google Scholar 

  43. Ranjbarzadeh R, Akhgar A, Musivand S, Afrand M (2018) Effects of graphene oxide‑silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: Synthesis, preparation and stability. Elsevier B.V, 2018. https://doi.org/10.1016/j.powtec.2018.05.036

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeshma Radhakrishnan.

Ethics declarations

Conflicts of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, N., Sobhan, C.B. Thermophysical characterization and melting heat transfer analysis of an organic phase change material dispersed with GNP- Ag hybrid nanoparticles. Heat Mass Transfer 58, 1811–1828 (2022). https://doi.org/10.1007/s00231-022-03218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03218-x

Navigation