Skip to main content
Log in

An experimental study on the enhancement of nucleate boiling heat transfer using modified surfaces

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this study, the nucleate pool boiling of water on modified surfaces has been studied experimentally. The influence of surface modifications on the main parameters of nucleate boiling, such as boiling heat transfer coefficient and wall superheat, have been examined. This investigation has been carried out by an experimental set up equipped with a high-speed camera to extract the bubbles' departure diameter and frequency of bubble generation from captured images of the boiling phenomenon. The distilled water has been used as pool fluid, and all the experiments have been carried out at atmospheric pressure and saturated pool boiling conditions. It is observed that by adding grooves to the surface, the departure diameter of generated bubbles increases in comparison with a smooth surface. On the other hand, surface modifications reduce the departure frequency of bubbles. Experimental results also show that the heat transfer rate alters by the depth of the grooves on the solid surface. According to the results, the surface with 1.4 mm grooves has the highest boiling heat transfer coefficient, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Fig. 17

Similar content being viewed by others

Data availability

'Not applicable'.

Code availability

'Not applicable'.

Abbreviations

CR :

Roundness coefficient

HTC :

Heat transfer coefficient (W/m2.K

A :

Bubble area (m2)

A sur :

Cross-section area (m2)

\({{\varvec{c}}}_{{\varvec{p}}}\) :

Specific heat of liquid (J/kg K)

D bubble :

Bubble Diameter (mm)

f :

Frequency (1/s)

\({{\varvec{h}}}_{{\varvec{f}}{\varvec{g}}}\) :

Latent heat (kJ/kg)

I :

Electric current (A)

k:

Thermal conductivity (W/m.K)

\({{\varvec{n}}}_{{\varvec{s}}}\) :

Nucleation site density (1/m2)

P:

Bubble perimeter (m)

\({q}^{\prime\prime}\) :

Heat flux (W/m2)

T:

Temperature (K)

\({{\varvec{\rho}}}_{{\varvec{v}}}\) :

Vapor density (kg/m3)

b :

Bubble

sat :

Saturated

w :

Wall

lat :

Latent

sen :

Sensible

References

  1. Kandlikar SG, Spiesman PH (1998) Effect of Surface Finish on Flow Boiling Heat Transfer. Proc. 1998 ASME Int Mech Eng Congr Expo Anaheim CA USA 361-157–163. http://www.rit.edu/~w-taleme/Papers/ConferencePapers/C034.pdf

  2. Wen MY, Ho CY (2003) Pool boiling heat transfer of deionized and degassed water in vertical/horizontal V-shaped geometries. Heat Mass Transf Und Stoffuebertragung 39:729–736. https://doi.org/10.1007/s00231-002-0358-z

    Article  Google Scholar 

  3. Chao DF, Zhang N, Yang W-J (2004) Nucleate Pool Boiling on Copper – Graphite. Compos Surf Its Enhancement Mechanism 18

  4. Das AK, Das PK, Saha P (2007) Nucleate boiling of water from plain and structured surfaces 31:967–977. https://doi.org/10.1016/j.expthermflusci.2006.10.006

    Article  Google Scholar 

  5. Das AK, Das PK, Saha P (2009) Performance of different structured surfaces in nucleate pool boiling. Appl Therm Eng 29:3643–3653. https://doi.org/10.1016/j.applthermaleng.2009.06.020

    Article  Google Scholar 

  6. Chen R, Lu M-C, Srinivasan V, Wang Z, Cho HH, Majumdar A (2009) Nanowires for Enhanced Boiling Heat Transfer. Nano Lett 9:548–553. https://doi.org/10.1021/nl8026857

    Article  Google Scholar 

  7. Pastuszko R (2012) Pool boiling for extended surfaces with narrow tunnels – Visualization and a simplified model. Exp Therm Fluid Sci 38:149–164. https://doi.org/10.1016/j.expthermflusci.2011.12.004

    Article  Google Scholar 

  8. Pastuszko R (2008) Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels. Exp Therm Fluid Sci 32:1564–1577. https://doi.org/10.1016/j.expthermflusci.2008.04.012

    Article  Google Scholar 

  9. Jo H, Kim S, Kim H, Kim J, Kim MH (2012) Nucleate boiling performance on nano / microstructures with different wetting surfaces. 1–9

  10. Shin S, Seok Kim B, Choi G, Lee H, Hee Cho H (2012) Double-templated electrodeposition: Simple fabrication of micro-nano hybrid structure by electrodeposition for efficient boiling heat transfer. Appl Phys Lett 101. https://doi.org/10.1063/1.4772539

  11. Kim BS, Lee H, Shin S, Choi G, Cho HH (2014) Interfacial wicking dynamics and its impact on critical heat flux of boiling heat transfer. Appl Phys Lett 105. https://doi.org/10.1063/1.4901569

  12. Lee Y, Kang DG, Kim JH, Jung D (2014) Nucleate boiling heat transfer coefficients of HFO1234yf on various enhanced surfaces. Int J Refrig 38:198–205. https://doi.org/10.1016/j.ijrefrig.2013.09.014

    Article  Google Scholar 

  13. Xu ZG, Qu ZG, Zhao CY, Tao WQ (2014) International Journal of Heat and Mass Transfer Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface 77:1169–1182. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.037

    Article  Google Scholar 

  14. El-genk MS, Suszko A (2016) International Journal of Heat and Mass Transfer Effects of inclination angle and liquid subcooling on nucleate boiling on dimpled copper surfaces. Int J Heat Mass Transf 95:650–661. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.048

    Article  Google Scholar 

  15. Kim J, Jun S, Laksnarain R, You SM (2016) International Journal of Heat and Mass Transfer Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. Int J Heat Mass Transf 101:992–1002. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067

    Article  Google Scholar 

  16. Shin S, Choi G, Rallabandi B, Lee D, Il Shim D, Kim BS, Kim KM, Cho HH (2018) Enhanced Boiling Heat Transfer using Self-Actuated Nanobimorphs. Nano Lett 18:6392–6396. https://doi.org/10.1021/acs.nanolett.8b02747

  17. Lee D, Kim BS, Moon H, Lee N, Shin S, Cho HH (2018) Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions. Int J Heat Mass Transf 120:1020–1030. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.100

    Article  Google Scholar 

  18. Gouda RK, Pathak M, Khan MK (2018) boiling heat transfer enhancement with segmented finned microchannels structured surface. Int J Heat Mass Transf 127:39–50. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.115

    Article  Google Scholar 

  19. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  20. Pioro IL, Rohsenow W, Doerffer SS (2004) Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface. Int J Heat Mass Transf 47:5033–5044. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019

  21. Ebrahimi-Dehshali M, Najm-Barzanji SZ, Hakkaki-Fard A (2018) Pool boiling heat transfer enhancement by twisted-tape fins. Appl Therm Eng 135:170–177. https://doi.org/10.1016/j.applthermaleng.2018.02.040

    Article  Google Scholar 

  22. Pastuszko R, Kaniowski R (2016) Visualization of pool boiling on plain micro-fins and micro- fins with sintered perforated foil. J Phys Conf Ser 745. https://doi.org/10.1088/1742-6596/745/3/032137

  23. Das S, Bhaumik S (2016) Experimental Study of Nucleate Pool Boiling Heat Transfer Using Water on Thin-Film Surface. Iran J Sci Technol Trans Mech Eng D. https://doi.org/10.1007/s40997-016-0009-5

  24. Ramaswamy C, Joshi Y, Nakayama W, Johnson WB (2003) Semi-analytical model for boiling from enhanced structures. Int J Heat Mass Transf 46:4257–4269. https://doi.org/10.1016/S0017-9310(03)00216-3

    Article  Google Scholar 

  25. Chien LH, Webb RL (1998) Measurement of bubble dynamics on an enhanced boiling surface. Exp Therm Fluid Sci 16:177–186. https://doi.org/10.1016/S0894-1777(97)10017-6

    Article  Google Scholar 

  26. Haider SI, Webb RL (1997) A transient micro-convection model of nucleate pool boiling. Int J Heat Mass Transf 40:3675–3688. https://doi.org/10.1016/S0017-9310(96)00372-9

    Article  Google Scholar 

  27. Chien LH, Webb RL (1998) A nucleate boiling model for structured enhanced surfaces. Int J Heat Mass Transf 41:2183–2195. https://doi.org/10.1016/S0017-9310(97)00302-5

    Article  MATH  Google Scholar 

  28. Daikoku T (1980) Dynamic Model of Enhanced Boiling. J Heat Transfer 102:451–456

    Google Scholar 

  29. Webb RL (2004) Odyssey of the enhanced boiling surface. Proc ASME Heat Transf Eng Summer Conf 2004, HT/FED 2004. 4:961–969. https://doi.org/10.1115/ht-fed2004-56918

  30. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transf 23:73–87. https://doi.org/10.1016/0017-9310(80)90140-4

    Article  Google Scholar 

  31. Fritz W (1935) maximum volume of vapor bubbles. Phys Zeitschrift 36:379–384

    Google Scholar 

  32. Nakayama T, Daikoku W, Kuwahara T, Nakajima H (1980) Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces Part II: Analytical Modeling, J. Heat Transfer. 102:451–456

  33. Mikic BB, Rohsenow WM (1969) A new correlation of pool-boiling data including the effect of heating surface characteristics. J Heat Transfer 91:245–250. https://doi.org/10.1115/1.3580136

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gharraei.

Ethics declarations

Consent to participate

'Not applicable'.

Consent for publication

'Not applicable'.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharraei, R., Damiri, S., Mahmoudi, M. et al. An experimental study on the enhancement of nucleate boiling heat transfer using modified surfaces. Heat Mass Transfer 58, 1925–1936 (2022). https://doi.org/10.1007/s00231-022-03216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03216-z

Navigation