Skip to main content
Log in

Experimental investigation of surface finishing technique impact on subcooled flow boiling heat transfer enhancement: sandpapering and sandblasting

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Despite surface characteristics being perceived as a prominent factor in boiling, the effect of surface roughness has not been consistently understood. Evidence of this is the diverse representations of the surface characteristics in widely used correlations. The surface's microscopic profile is a determinant factor since the minuscule peaks and valleys serve as potential bubble generation sites. To understand the effect of finishing on surface characteristics and boiling, eight sample surfaces generated via two techniques, namely sandpapering and sandblasting, are investigated and later put under subcooled flow boiling tests of water in this study. The experiments are conducted in atmospheric pressure with flow rates ranging from 2.5 to 7.5 L/min and subcooling of 5.6 and 9.6 °C. The results obtained from profilometry show that cavities' geometry and distribution are characteristically different when comparing the two finishing techniques. Increasing the average roughness (\({\mathrm{S}}_{\mathrm{a}}\)) from 0.017 to 7.325 µm is shown to generally enhance subcooled flow boiling heat transfer coefficient up to 100%. However, the finishing technique affects this improvement. In spite of having almost equal \({\mathrm{S}}_{\mathrm{a}}\), the boiling performance of surfaces prepared with sandblasting technique surpasses those roughened by sandpaper in terms of initiation of boiling as well as heat transfer coefficient. This discrepancy is justified by referring to the difference in surface microscopic characteristics, inherent to the finishing method, whereby the disperse and soft-edged cavities on sandpapered surfaces promote flooding phenomenon, while sharp-edged, densely packed peaks and valleys on sandblasted surfaces provide better entrapment of the bubble nuclei. This paper concludes by evaluating and modifying three common boiling correlations as representative of three methods of accounting for surface characteristics based on the experimental results. Relatively high prediction errors reveal the need for more accurate models for subcooled flow boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Available.

Code availability

NA.

Abbreviations

HTET:

Heat Transfer Enhancement Technique

ONB:

Onset of Nucleate Boiling

BHTC:

Boiling Heat Transfer Coefficient

CHF:

Critical Heat Flux

AFM:

Atomic Force Microscopy

DAQ:

Data Acquisition unit

MDB:

Modified Dittus-Boelter

SEM:

Scanning Electron Microscopy

S:

Smooth

SB:

Sandblasted

R#:

Sandpapered

Csf :

Surface-Fluid Constant

Ra :

Average 2-D roughness(µm)

Rq :

Root mean square 2-D roughness (µm)

Sa :

Average 3-D roughness(µm)

Sq :

Root mean square 3-D roughness (µm)

Sm :

Average distance between adjacent valleys (µm)

Sp :

Maximum height of peaks (µm)

Sz :

Ten-point height(µm)

St :

Maximum height of the profile

Rp old :

Roughness parameter in Hua

Fq, Fp, Ff, Fwr, Fwm :

Functions defined in VDI

F:

Forced convection enhancement factor

S:

Suppression factor

P:

Experimental test points

q:

Wall heat flux (W.m2)

P:

Pressure (Pa)

Pc :

Critical pressure (Pa)

M:

Molar weight (g.mol1)

x:

Vapor quality

T:

Temperature (°C)

u:

Flow velocity (m.s1)

Q:

Flow rate (L.min1)

G:

Mass flux (kg.m2 s1)

Re:

Reynolds number

Nu:

Nusselt number

Pr:

Prandtl number

g:

Gravity acceleration (m2s1)

Cp:

Specific heat (W.kg1.K1)

k:

Thermal conductivity (W.m1.K1)

h:

Heat transfer coefficient (kW.m2.K1)

SD:

Standard Deviation

ρ :

Density (kg.m2)

μ :

Viscosity (Pa.s)

σ :

Surface tension (N.m1)

φ :

Peripheral angle (degree)

\({\mathrm{\Delta T}}_{\mathrm{sub}}\) :

Inlet subcooling (°C)

\({\mathrm{\Delta T}}_{\mathrm{sup}}\) :

Wall superheat (°C

d:

Departure

r:

Reduced

Cu:

Copper

0:

Reference

pb:

Pool boiling

l:

Liquid

g:

Gas

lg:

Liquid to gas

b:

Bulk

w:

Wall

sub:

Subcooled

sat:

Saturation

sp:

Single-phase

in:

Inlet

nb:

Nucleate boiling

References

  1. Akbari E, Ghazanfari Holagh S, Saffari H, Shafiee M (2021) On the effect of silver nanoparticles deposition on porous copper foams on pool boiling heat transfer enhancement: an experimental visualization. Heat Mass Transf 58:447–466. https://doi.org/10.1007/s00231-021-03123-9

    Article  Google Scholar 

  2. Holagh SG, Abdous MA, Shafiee M, Rosen MA (2021) Performance evaluation of helical coils as a passive heat transfer enhancement technique under flow condensation by use of entropy generation analysis. Therm Sci Eng Prog 23:100914. https://doi.org/10.1016/j.tsep.2021.100914

    Article  Google Scholar 

  3. Cao Y, Abdous MA, Ghazanfari Holagh S, Shafiee M, Hashemian M (2021) Entropy generation and sensitivity analysis of R134a flow condensation inside a helically coiled tube-in-tube heat exchanger. Int J Refrig 130:104–116. https://doi.org/10.1016/j.ijrefrig.2021.06.007

    Article  Google Scholar 

  4. Liang G, Mudawar I (2019) Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf 128:892–933. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.026

    Article  Google Scholar 

  5. Holagh SG, Abdous MA, Shamsaiee M, Saffari H (2019) Assessment of heat transfer enhancement technique in flow boiling conditions based on entropy generation analysis: twisted-tape tube. Heat Mass Transf. https://doi.org/10.1007/s00231-019-02705-y

    Article  Google Scholar 

  6. Vontas K, Andredaki M, Georgoulas A, Miché N, Marengo M (2021) The effect of surface wettability on flow boiling characteristics within microchannels. Int J Heat Mass Transf 172:121133. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121133

    Article  Google Scholar 

  7. Alimoradi H, Shams M, Ashgriz N, Bozorgnezhad A (2021) A novel scheme for simulating the effect of microstructure surface roughness on the heat transfer characteristics of subcooled flow boiling. Case Stud Therm Eng 24:100829. https://doi.org/10.1016/j.csite.2020.100829

    Article  Google Scholar 

  8. Huang S, Wang L, Pan Z, Zhou Z (2021) Experimental investigation of a new hybrid structured surface for subcooled flow boiling heat transfer enhancement. Appl Therm Eng 192:116929. https://doi.org/10.1016/j.applthermaleng.2021.116929

    Article  Google Scholar 

  9. Ahmadi R, Okawa T (2015) Influence of surface wettability on bubble behavior and void evolution in subcooled flow boiling. Int J Therm Sci 97:114–125. https://doi.org/10.1016/j.ijthermalsci.2015.06.012

    Article  Google Scholar 

  10. Sarker D, Ding W, Schneider C, Hampel U (2019) Single bubble dynamics during nucleate flow boiling on a vertical heater: Experimental and theoretical analysis of the effect of surface wettability, roughness and bulk liquid velocity. Int J Heat Mass Transf 142:118481. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118481

    Article  Google Scholar 

  11. Liang G, Mudawar I (2020) Review of channel flow boiling enhancement by surface modification, and instability suppression schemes. Int J Heat Mass Transf 146:118864. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118864

    Article  Google Scholar 

  12. Shen B, Hamazaki T, Ma W, Iwata N, Hidaka S, Takahara A, Takahashi K, Takata Y (2019) Enhanced pool boiling of ethanol on wettability-patterned surfaces. Appl Therm Eng 149:325–331. https://doi.org/10.1016/j.applthermaleng.2018.12.049

    Article  Google Scholar 

  13. Kim J, Lee J, Godinez J (2018) Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface. J Heat Transf 139:1–9. https://doi.org/10.1115/1.4036599

    Article  Google Scholar 

  14. Courty C, Foust A (1955) Surface Variables In Nucleate Boiling. In: Chem Engng Progr Symp Ser 51

  15. Bankoff SG (1960) A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. J Heat Transfer 82:265–272. https://doi.org/10.1115/1.3679930

    Article  Google Scholar 

  16. Hsu YY (2012) On the Size Range of Active Nucleation Cavities on a Heating Surface. J Heat Transfer 84:207. https://doi.org/10.1115/1.3684339

    Article  Google Scholar 

  17. Nawaz S, Strobel J, Ghafoor A, Lu Y, Balakrishnan VR (2011) Characterization of nucleate pool boiling from smooth and rough surfaces. Purdue University, Indiana (UMI 3402307)

    Google Scholar 

  18. McHale JP, Garimella SV (2013) Nucleate boiling from smooth and rough surfaces - Part 1: Fabrication and characterization of an optically transparent heater-sensor substrate with controlled surface roughness. Exp Therm Fluid Sci 44:456–467. https://doi.org/10.1016/j.expthermflusci.2012.08.006

    Article  Google Scholar 

  19. Kandlikar S, Spiesman P (1998) Effect of surface finish on flow boiling heat transfer. Asme Heat Transf Div Publ Htd 14:122–126

    Google Scholar 

  20. Al Masri M, Cioulachtjian S, Veillas C, Verrier I, Jourlin Y, Ibrahim J, Martin M, Pupier C, Lefèvre F (2017) Nucleate boiling on ultra-smooth surfaces: Explosive incipience and homogeneous density of nucleation sites. Exp Therm Fluid Sci 88:24–36. https://doi.org/10.1016/j.expthermflusci.2017.05.008

    Article  Google Scholar 

  21. Tadrist L, Combeau H, Zamoum M, Kessal M (2020) Experimental study of heat transfer at the transition regime between the natural convection and nucleate boiling: Influence of the heated wall tilt angle on the onset of nucleate boiling (ONB) and natural convection (ONC). Int J Heat Mass Transf 151:1–16. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119388

    Article  Google Scholar 

  22. Jo H, Ahn HS, Kang S, Kim MH (2011) A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int J Heat Mass Transf 54:5643–5652. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.001

    Article  Google Scholar 

  23. Kim DE, Yu DI, Jerng DW, Kim MH, Ahn HS (2015) Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp Therm Fluid Sci 66:173–196. https://doi.org/10.1016/j.expthermflusci.2015.03.023

    Article  Google Scholar 

  24. Gupta SK, Misra RD (2018) An experimental investigation on flow boiling heat transfer enhancement using Cu-TiO2 nanocomposite coating on copper substrate. Exp Therm Fluid Sci 98:406–419. https://doi.org/10.1016/J.EXPTHERMFLUSCI.2018.06.012

    Article  Google Scholar 

  25. Kumar S, Rahul G, Misra D (2018) Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim 136:1781–1793. https://doi.org/10.1007/s10973-018-7805-7

    Article  Google Scholar 

  26. Jothi Prakash CG, Prasanth R (2018) Enhanced boiling heat transfer by nano structured surfaces and nanofluids. Renew Sustain Energy Rev 82:4028–4043. https://doi.org/10.1016/j.rser.2017.10.069

    Article  Google Scholar 

  27. Marto PJ, Rohsenow WM (1966) Effects of surface conditions on nucleate pool boiling of sodium. J Heat Transfer 88:196–203. https://doi.org/10.1115/1.3691514

    Article  Google Scholar 

  28. Rainey KN, You SM (2000) Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72. J Heat Transfer 122:509–516. https://doi.org/10.1115/1.1288708

    Article  Google Scholar 

  29. Kang MG (2000) Effect of surface roughness on pool boiling heat transfer. Int J Heat Mass Transf 43:4073–4085. https://doi.org/10.1016/S0017-9310(00)00043-0

    Article  MATH  Google Scholar 

  30. Jung JY, Kwak HY (2006) Effect of surface condition on boiling heat transfer from silicon chip with submicron-scale roughness. Int J Heat Mass Transf 49:4543–4551. https://doi.org/10.1016/j.ijheatmasstransfer.2006.03.045

    Article  MATH  Google Scholar 

  31. Jones BJ, McHale JP, Garimella SV (2009) The influence of surface roughness on nucleate pool boiling heat transfer. J Heat Transfer 131:1–14. https://doi.org/10.1115/1.3220144

    Article  Google Scholar 

  32. Kim J, Jun S, Laksnarain R, You SM (2016) Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. Int J Heat Mass Transf 101:992–1002. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067

    Article  Google Scholar 

  33. Suhas BG, Sathyabhama A (2018) Heat transfer and force balance approaches in bubble dynamic study during subcooled flow boiling of water–ethanol mixture. Exp Heat Transf 31:1–21. https://doi.org/10.1080/08916152.2017.1328469

    Article  Google Scholar 

  34. Kim JS, Girard A, Jun S, Lee J, You SM (2018) Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface. Int J Heat Mass Transf 118:802–811. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124

    Article  Google Scholar 

  35. Arenales MRM, Kumar SK, Kuo LS, Chen PH (2020) Surface roughness variation effects on copper tubes in pool boiling of water. Int J Heat Mass Transf 151:119399. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119399

    Article  Google Scholar 

  36. Swain A, Swain S, Kar SP, Sarangi RK, Chandrasekhar P (2020) Effect of surface characterization on the application of pool boiling heat transfer augmentation. Mater Today Proc 38:469–473. https://doi.org/10.1016/j.matpr.2020.08.564

    Article  Google Scholar 

  37. Fan S, Jiao L, Wang K, Duan F (2020) Pool boiling heat transfer of saturated water on rough surfaces with the effect of roughening techniques. Int J Heat Mass Transf 159:1–13. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120054

    Article  Google Scholar 

  38. Takamatsu H, Momoki S, Fujii T (1993) A correlation for forced convective boiling heat transfer of pure refrigerants in a horizontal smooth tube. Int J Heat Mass Transf 36:3351–3360. https://doi.org/10.1016/0017-9310(93)90016-Y

    Article  Google Scholar 

  39. Celata GP, Cumo M, Gallo D, Mariani A, Zummo G (2007) A Photographic study of subcooled flow boiling burnout at high heat flux and velocity. Int J Heat Mass Transf 50:283–291. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.020

    Article  MATH  Google Scholar 

  40. Paz C, Conde M, Porteiro J, Concheiro M (2017) Effect of heating surface morphology on active site density in subcooled flow nucleated boiling. Exp Therm Fluid Sci 82:147–159. https://doi.org/10.1016/j.expthermflusci.2016.11.011

    Article  Google Scholar 

  41. Paz MC, Conde M, Suárez E, Concheiro M (2015) On the effect of surface roughness and material on the subcooled flow boiling of water: Experimental study and global correlation. Exp Therm Fluid Sci 64:114–124. https://doi.org/10.1016/j.expthermflusci.2015.02.016

    Article  Google Scholar 

  42. Paz C, Conde M, Porteiro J, Concheiro M (2015) Effect of heating surface morphology on the size of bubbles during the subcooled flow boiling of water at low pressure. Int J Heat Mass Transf 89:770–782. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.003

    Article  Google Scholar 

  43. Setoodeh H, Keshavarz A, Ghasemian A, Nasouhi A (2016) Experimental Investigation of Subcooled Flow Boiling in an Inclined Channel with a Hot Spot. Exp Heat Transf 29:741–758. https://doi.org/10.1080/08916152.2015.1113214

    Article  Google Scholar 

  44. Soleimani B, Keshavarz A (2016) Heat transfer enhancement of an internal subcooled flow boiling over a hot spot. Appl Therm Eng 99:206–213. https://doi.org/10.1016/j.applthermaleng.2015.12.043

    Article  Google Scholar 

  45. Alam T, Lee PS, Yap CR (2013) Effects of surface roughness on flow boiling in silicon microgap heat sinks. Int J Heat Mass Transf 64:28–41. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.009

    Article  Google Scholar 

  46. Jafari R, Okutucu-Özyurt T, Ünver HÖ, Bayer Ö (2016) Experimental investigation of surface roughness effects on the flow boiling of R134a in microchannels. Exp Therm Fluid Sci 79:222–230. https://doi.org/10.1016/j.expthermflusci.2016.07.016

    Article  Google Scholar 

  47. Jayaramu P, Gedupudi S, Das SK (2019) Influence of heating surface characteristics on flow boiling in a copper microchannel: Experimental investigation and assessment of correlations. Int J Heat Mass Transf 128:290–318. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.075

    Article  Google Scholar 

  48. Fang X, Yuan Y, Xu A, Tian L, Wu Q (2017) Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water. Fusion Eng Des 122:52–63. https://doi.org/10.1016/j.fusengdes.2017.09.008

    Article  Google Scholar 

  49. Dittus FW, Boelter LMK (1985) Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf 12:3–22. https://doi.org/10.1016/0735-1933(85)90003-X

    Article  MATH  Google Scholar 

  50. Rohsenow W (1952) Heat transfer with evaporation. University of Michigan

    Google Scholar 

  51. Vachon RI, Tanger GE, Davis DL, Nix GH (1968) Pool Boiling on Polished and Chemically Etched Stainless-Steel Surfaces. ASME J Heat Transf 80:231–238. https://doi.org/10.1115/1.3597486

    Article  Google Scholar 

  52. Hua S, Huang R, Li Z, Zhou P (2015) Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface. Appl Therm Eng 77:180–191. https://doi.org/10.1016/j.applthermaleng.2014.11.082

    Article  Google Scholar 

  53. Cooper MG (1984) Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties. Adv Heat Transf 16:157–239. https://doi.org/10.1016/S0065-2717(08)70205-3

    Article  Google Scholar 

  54. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Process Technol 123:133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  55. Liu Z, Winterton RHS (1991) A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34:2759–2766. https://doi.org/10.1016/0017-9310(91)90234-6

    Article  Google Scholar 

  56. Gorenflo D, Baumhögger E, Herres G, Kotthoff S (2014) Prediction methods for pool boiling heat transfer: A state-of-the-art review. Int J Refrig 43:203–226. https://doi.org/10.1016/j.ijrefrig.2013.12.012

    Article  Google Scholar 

  57. VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (2013) VDI-Wärmeatlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19981-3

    Book  Google Scholar 

  58. Lu YW, Kandlikar SG (2011) Nanoscale surface modification techniques for pool boiling enhancement - A critical review and future directions. Heat Transf Eng 32:827–842. https://doi.org/10.1080/01457632.2011.548267

    Article  Google Scholar 

  59. Kline S, Mcclintock F (1953) Describing Uncertainties in Single-Sample Experiments. Mech Eng 75:3–8

    Google Scholar 

  60. Abdous MA, Holagh SG, Shamsaiee M, Saffari H (2019) The prediction of bubble departure and lift-off radii in vertical U-shaped channel under subcooled flow boiling based on forces balance analysis. Int J Therm Sci 142:316–331. https://doi.org/10.1016/j.ijthermalsci.2019.04.021

    Article  Google Scholar 

  61. Holagh SG, Abdous MA, Roy P, Shamsaiee M, Shafiee M, Saffari H, Vali L, Andersson R (2021) An experimental investigation on bubbles departure characteristics during sub-cooled flow boiling in a vertical U-shaped channel utilizing high-speed photography. Therm Sci Eng Prog 22:100828. https://doi.org/10.1016/j.tsep.2020.100828

    Article  Google Scholar 

  62. Holagh SG, Abdous MA, Shamsaiee M, Saffari H (2020) An experimental study on the influence of radial pressure gradient on bubbles dynamic behavior in subcooled flow boiling. Therm Sci Eng Prog 16:100468. https://doi.org/10.1016/j.tsep.2019.100468

    Article  Google Scholar 

  63. Mitutoyo (1984) QUICK GUIDE TO SURFACE ROUGHNESS MEASUREMENT Reference guide for laboratory and workshop. https://www.mitutoyo.com/wp-content/uploads/2012/11/1984_Surf_Roughness_PG.pdf

  64. Kim JS, Girard A, Jun S, Lee J, You SM (2018) Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. Int J Heat Mass Transf 118:802–811. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124

    Article  Google Scholar 

  65. Ribatski G, Jabardo JMS (2003) Experimental study of nucleate boiling of halocarbon refrigerants on cylindrical surfaces. Int J Heat Mass Transf 46:4439–4451. https://doi.org/10.1016/S0017-9310(03)00252-7

    Article  Google Scholar 

Download references

Funding

There has been no funding source for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriyar Ghazanfari Holagh.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsaiee, M., Holagh, S.G., Abdous, M.A. et al. Experimental investigation of surface finishing technique impact on subcooled flow boiling heat transfer enhancement: sandpapering and sandblasting. Heat Mass Transfer 58, 1785–1810 (2022). https://doi.org/10.1007/s00231-022-03211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03211-4

Navigation