Skip to main content

Advertisement

Log in

Drying of Spirulina with a continuous infrared-assisted refractance window™ dryer equipped with a photovoltaic-thermal solar collector

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Drying is one of the effective techniques in increasing Spirulina shelf life. Performance of a continuous infrared-refractance window™ dryer coupled with a double-pass photovoltaic-thermal (PVT) solar collector was investigated at different drying air flow rates (0.036, 0.071, and 0.107 m3/s/m2 collector) and Spirulina feeding rates (1.2 L/h, 1.8 L/h, and 2.4 L/h). The maximum electrical and thermal efficiencies of the PVT collector, solar electricity fraction, and solar heat fraction were found to be 11.91%, 68.47%, 0.76, and 0.78, respectively. The average specific energy consumption values ranged between 1.21 and 2.437 kWh/kg. The yellowness index (b*) of the dried products decreased by 63.67%, and the redness index (a*) increased by 39.4% when the feeding rate was increased from 1.2 to 2.4 L/h. The highest phycocyanin content was approximately 11.4 g/100 g at the feeding rate of 2.4 L/h and the air flow rate of 0.107 m3/s/m2 collector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

A:

Area (m2)

a*:

Redness (dimensionless)

b:

Width of PV panel (m)

b*:

Yellowness (dimensionless)

C:

Specific heat (J/kg K)

d:

Depth of air channel (m)

Dh :

Hydraulic diameter (m)

dt:

Experiment time (s)

dx:

Unit length (m)

EPV :

Electrical energy of the PV module during the tests (kJ)

ESh :

Thermal energy produced in PVT collector (kJ)

ET :

Total energy consumption (kJ)

G:

Solar irradiance (W/m2)

H:

Height of fin (m)

h:

Heat transfer coefficient (W/m2K)

k:

Thermal conductivity (W/mk)

L:

Length (m)

L*:

Lightness (dimensionless)

l:

Latent heat (kJ/kg)

m:

Mass (kg)

ṁ:

Mass flow rate (kg/s)

Nu:

Nusselt number (dimensionless)

OD:

Optical density

PF:

Packing factor of PV panel (dimensionless)

PPV :

Electrical power generated by PVT collector (W)

Q̇:

Useful thermal power gain of PVT collector (W)

S:

Radiative heat flux (W/m2)

SEC:

Specific energy consumption (kWh/kg)

SEF:

Solar electricity fraction (decimal)

SHF:

Solar heat fraction (decimal)

SMER:

Specific moisture extraction rate (kg/kWh)

T:

Temperature (K)

t:

Thickness of fin (m)

U:

Heat losses coefficient (w/m2K)

UC:

Uncertainty of instrument

V:

Velocity of wind (m/s)

V̇Volume air fl:

Ow rate (m3/s/m2 collector)

MF:

Mass fraction (decimal)

α:

Absorption coefficient (decimal)

δ:

Width of Mylar (m)

ε:

Emissivity (decimal)

ζ:

Efficiency of PVT collector (decimal)

\({\eta }_{fin}\) :

Efficiency of fin (decimal)

σ:

Stefan-Boltzmann constant (5.67 × 10−8 W/m2 K4)

τ:

Transmission coefficient (decimal)

Φ:

Effectiveness factor of fins (dimensionless)

a:

Drying air

amb:

Ambient

au:

Upper airstream

al:

Lower airstream

bp:

Back plate

c:

Convective

el:

Electrical

g:

Glass

th:

Thermal

i:

Inlet air

IR:

Infrared

o:

Outlet air

p:

Absorber plate

r:

Radiative

s:

Sky

SM:

Spirulina maxima

sw:

Side walls

v:

Vaporization

w:

Wind

wd:

Evaporated water

References

  1. Costa JAV, Freitas BCB, Rosa GM, Moraes L, Morais MG, Mitchell BG (2019) Operational and economic aspects of Spirulina-based biorefinery. Bioresour Technol 292:121946. https://doi.org/10.1016/j.biortech.2019.121946

    Article  Google Scholar 

  2. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A (2018) A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93. https://doi.org/10.1016/j.plipres.2018.04.004

    Article  Google Scholar 

  3. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 26:709 722. https://doi.org/10.1016/j.sjbs.2017.11.003

  4. Koyande AK, Chew KW, Rambabu K, Tao Y, Chu D-T, Show P-L (2019) Microalgae: A potential alternative to health supplementation for humans. Food Sci Hum Wellness 8:16–24. https://doi.org/10.1016/j.fshw.2019.03.001

    Article  Google Scholar 

  5. Lafarga T, Fernández-Sevilla JM, González-López C, Acién-Fernández FG (2020) Spirulina for the food and functional food industries. Food Res Int 137:109356. https://doi.org/10.1016/j.foodres.2020.109356

    Article  Google Scholar 

  6. Pragati S, Preeti B (2014) Technological revolution in drying of fruit and vegetables. Int J Sci Res 3:705–711

    Google Scholar 

  7. Bernaert N, Van Droogenbroeck B, Van Pamel E, De Ruyck H (2019) Innovative refractance window drying technology to keep nutrient value during processing. Trends Food Sci Technol 84:22–24. https://doi.org/10.1016/j.tifs.2018.07.029

    Article  Google Scholar 

  8. Koşan M, Demirtaş M, Aktaş M, Dişli E (2020) Performance analyses of sustainable PV/T assisted heat pump drying system. Sol Energy 199:657–672. https://doi.org/10.1016/j.solener.2020.02.040

    Article  Google Scholar 

  9. Mirzaei S, Ameri M, Ziaforoughi A (2021) Energy-exergy analysis of an infrared dryer equipped with a photovoltaic-thermal collector in glazed and unglazed modes. Renew Energy 169:541–556. https://doi.org/10.1016/j.renene.2021.01.046

    Article  Google Scholar 

  10. Krishnamoorthi S, Prabhahar M, Madhavan V, Pragathish T, Johnson F (2020) Effect of variation in injector nozzle holes on the performance of preheated Spirulina methyl ester used in VCR engine. Mater Today: Proc 45:5840–5846. https://doi.org/10.1016/j.matpr.2020.08.270

    Article  Google Scholar 

  11. Franco S, Jaques A, Pinto M, Fardella M, Valencia P, Núñez H, Ramírez C, Simpson R (2019) Dehydration of salmon (Atlantic salmon), beef, and apple (Granny Smith) using Refractance window™: Effect on diffusion behavior, texture, and color changes. Innov Food Sci Emerg Technol 52:8–16. https://doi.org/10.1016/j.ifset.2018.12.001

    Article  Google Scholar 

  12. Jimena Ortiz-Jerez M, Gulati T, Datta AK, Isabel Ochoa-Martinez C (2015) Quantitative understanding of Refractance Window (TM) drying. Food Bioprod Process 95:237–253. https://doi.org/10.1016/j.fbp.2015.05.010

    Article  Google Scholar 

  13. Rezvani Z, Mortezapour H, Ameri M, Akhavan H-R, Arslan S (2022) Optimization of tomato slices drying in a continuous infrared-assisted Refractance Window TM dryer using response surface methodology. Iran J Chem Chem Eng. https://doi.org/10.30492/IJCCE.2022.538139.4914

  14. Seyyed Abadi MM, Asadi Amirabadi A, Taheri A, Kashaninezhad M (2016) Investigation of infrared radiation on drying kinetics and color indexes of Anaryjeh (Froriepia subpinnata) leaf. Innov Food Technol 4:45–57. https://dx.doi.org/10.22104/jift.2016.339

  15. Hegazy MM, El-Sebaii A, Ramadan MR, Aboul-Enein S, Khallaf AE-M (2020) Comparative study of three different designs of a hybrid PV/T double-pass finned plate solar air heater. Environ Sci Pollut Res 27:32270–32282. https://doi.org/10.1007/s11356-019-07487-8

    Article  Google Scholar 

  16. Othman M, Yatim B, Sopian K, Bakar M (2006) Double-pass photovoltaic-thermal solar collector. J Energy Eng 132:121–126. https://doi.org/10.1016/j.renene.2004.10.007

    Article  Google Scholar 

  17. Hegazy AA (2000) Comparative study of the performances of four photovoltaic/thermal solar air collectors. Energy Convers Manage 41:861–881. https://doi.org/10.1016/S0196-8904(99)00136-3

    Article  Google Scholar 

  18. Duffie JA, Beckman WA, Blair N (2020) Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  19. Mortezapour H, Ghobadian B, Minaei S, Khoshtaghaza MH (2012) Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Drying Technol 30:560–566. https://doi.org/10.1080/07373937.2011.645261

    Article  Google Scholar 

  20. Yeh HM, Ho CD, Hou JZ (2002) Collector efficiency of double-flow solar air heaters with fins attached. Energy 27:715–727. https://doi.org/10.1016/S0360-5442(02)00010-5

    Article  Google Scholar 

  21. Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Introduction to heat transfer. John Wiley & Sons, USA

    Google Scholar 

  22. Heldman DR, Gorby D (1975) Prediction of thermal conductivity in frozen foods. Trans ASAE 18:740–0744. https://doi.org/10.13031/2013.36674

  23. Costa BR, Rodrigues MC, Rocha SF, Pohndorf RS, Larrosa AP, Pinto LA (2016) Optimization of Spirulina sp. drying in heat pump: effects on the physicochemical properties and color parameters. J Food Process Preserv 40:934–942. https://doi.org/10.1111/jfpp.12672

    Article  Google Scholar 

  24. Oliveira EG, Duarte JH, Moraes K, Crexi VT, Pinto LA (2010) Optimisation of Spirulina platensis convective drying: evaluation of phycocyanin loss and lipid oxidation. Int J Food Sci Tech 45:1572–1578. https://doi.org/10.1111/j.1365-2621.2010.02299.x

    Article  Google Scholar 

  25. Zarrouk C (1966) Contribution aletude dune cyanophycée influence de divers facteurs physiques et chimiques surla croissance etla photosynthèse de Spirulina maxima (Setch. et Gardner) Geitler (Ph. D. thèsis). University of Paris

  26. Duffie JA, Beckman WA (1980) Solar engineering of thermal processes. John Wiley & Sons, New Jersey

    Google Scholar 

  27. Eltawil MA, Azam MM, Alghannam AO (2018) Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renew Energy 116:594–605. https://doi.org/10.1016/j.renene.2017.10.007

    Article  Google Scholar 

  28. Coventry JS (2005) Performance of a concentrating photovoltaic/thermal solar collector. Sol Energy 78:211–222. https://doi.org/10.1016/j.solener.2004.03.014

    Article  Google Scholar 

  29. Coşkun S, Doymaz I, Tunçkal C, Erdoğan S (2017) Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transfer 53:1863–1871. https://doi.org/10.1007/s00231-016-1946-7

    Article  Google Scholar 

  30. Dorouzi M, Mortezapour H, Akhavan H-R, Moghaddam AG (2018) Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Sol Energy 162:364–371. https://doi.org/10.1016/j.solener.2018.01.025

    Article  Google Scholar 

  31. Alizadeh H-R, Mortezapour H, Akhavan H-R, Balvardi M (2019) Performance of a liquid desiccant-assisted solar juice concentration system for barberry juice. Sol Energy 184:1–10. https://doi.org/10.1016/j.solener.2019.03.085

    Article  Google Scholar 

  32. Eltawil MA, Azam MM, Alghannam AO (2018) Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha Viridis). J Clean Prod 181:352–364. https://doi.org/10.1016/j.jclepro.2018.01.229

    Article  Google Scholar 

  33. Hosseinizand H, Sokhansanj S, Lim CJ (2018) Studying the drying mechanism of microalgae Chlorella vulgaris and the optimum drying temperature to preserve quality characteristics. Drying Technol 36:1049–1060. https://doi.org/10.1080/07373937.2017.1369986

    Article  Google Scholar 

  34. Silva NC, Duarte CR, Barrozo MA (2020) Analysis of the use of a non-conventional rotary drum for dehydration of microalga Spirulina platensis. Bioprocess Biosystems Eng 43:1–9. https://doi.org/10.1007/s00449-020-02329-1

    Article  Google Scholar 

  35. Siddiqui FR, Elminshawy NA, Addas MF (2016) Design and performance improvement of a solar desalination system by using solar air heater: Experimental and theoretical approach. Desalination 399:78–87. https://doi.org/10.1016/j.desal.2016.08.015

    Article  Google Scholar 

  36. Dubey S, Solanki S, Tiwari A (2009) Energy and exergy analysis of PV/T air collectors connected in series. Energy Build 41:863–870. https://doi.org/10.1016/j.enbuild.2009.03.010

    Article  Google Scholar 

  37. Lee JH, Hwang SG, Lee GH (2019) Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids. Energies 12:1–16. https://doi.org/10.3390/en12163063

    Article  Google Scholar 

  38. Minaei S, Motevali A, Ghobadian B, Banakar A, Samadi SH (2014) An investigation of energy consumption, solar fraction and hybrid photovoltaic–thermal solar dryer parameters in drying of chamomile flower. Int J Food Eng 10:697–711. https://doi.org/10.1515/ijfe-2014-0135

    Article  Google Scholar 

  39. Singh AP, Kumar A, Singh OP (2020) Effect of natural convection and thermal storage system on the electrical and thermal performance of a hybrid PV-T/PCM systems. Mater Today: Proc 39:1899–1904. https://doi.org/10.1016/j.matpr.2020.08.010

    Article  Google Scholar 

  40. Pourafshar ST, Jafarinaemi K, Mortezapour H (2020) Development of a photovoltaic-thermal solar humidifier for the humidification-dehumidification desalination system coupled with heat pump. Sol Energy 205:51–61. https://doi.org/10.1016/j.solener.2020.05.045

    Article  Google Scholar 

  41. Yandri E (2019) Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator. Sol Energy Mater Sol Cells 201:110066. https://doi.org/10.1016/j.solmat.2019.110066

    Article  Google Scholar 

  42. Tiwari S, Agrawal S, Tiwari GN (2018) PVT air collector integrated greenhouse dryers. Renew Sust Energ Rev 90:142–159. https://doi.org/10.1016/j.rser.2018.03.043

    Article  Google Scholar 

  43. Fudholi A, Sopian K, Yazdi MH, Ruslan MH, Ibrahim A, Kazem HA (2014) Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers Manage 78:641–651. https://doi.org/10.1016/j.enconman.2013.11.017

    Article  Google Scholar 

  44. Agrawal S, Tiwari G, Pandey H (2012) Indoor experimental analysis of glazed hybrid photovoltaic thermal tiles air collector connected in series. Energy Build 53:145–151. https://doi.org/10.1016/j.enbuild.2012.06.009

    Article  Google Scholar 

  45. Putra RN, Ajiwiguna TA (2017) Influence of air temperature and velocity for drying process. Procedia Eng 170:516–519. https://doi.org/10.1016/j.proeng.2017.03.082

    Article  Google Scholar 

  46. Uddin Z, Suppakul P, Boonsupthip W (2016) Effect of air temperature and velocity on moisture diffusivity in relation to physical and sensory quality of dried pumpkin seeds. Drying Technol 34:1423–1433. https://doi.org/10.1080/07373937.2015.1119840

    Article  Google Scholar 

  47. Ziaforoughi A, Esfahani JA (2016) A salient reduction of energy consumption and drying time in a novel PV-solar collector-assisted intermittent infrared dryer. Sol Energy 136:428–436. https://doi.org/10.1016/j.solener.2016.07.025

    Article  Google Scholar 

  48. Kaveh M, Chayjan RA, Taghinezhad E, Sharabiani VR, Motevali A (2020) Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). J Clean Prod 259:120963. https://doi.org/10.1016/j.jclepro.2020.120963

    Article  Google Scholar 

  49. Mortezapour H, Rashedi S, Akhavan H, Maghsoudi H (2018) Experimental analysis of a solar dryer equipped with a novel heat recovery system for onion drying. J Agric Sci Technol 19:1227–1240

    Google Scholar 

  50. Darvishi H (2012) Energy consumption and mathematical modeling of microwave drying of potato slices. Agric Eng Int: CIGR J 14:94–102

    Google Scholar 

  51. Mortezapour H, Ghobadian B, Minaei S, Khoshtaghaza MH (2012) Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Dry Technol 30:560–566. https://doi.org/10.1080/07373937.2011.645261

    Article  Google Scholar 

  52. Motevali A, Minaei S, Khoshtaghaza MH, Amirnejat H (2011) Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 36:6433–6441. https://doi.org/10.1016/j.energy.2011.09.024

    Article  Google Scholar 

  53. Sharma G, Prasad S (2006) Specific energy consumption in microwave drying of garlic cloves. Energy 31:1921–1926. https://doi.org/10.1016/j.energy.2005.08.006

  54. Pool EK, Shahidi F, Mortazavi SA, Azizpour M, Daneshzad E (2016) Examination of the effect of Spirulina platensis microalgae on drying kinetics and the color change of kiwifruit pastille. J Food Meas Charact 10:634–642. https://doi.org/10.1007/s11694-016-9347-7

    Article  Google Scholar 

  55. Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A (2010) Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J Sci Food Agric 90:1656–1664. https://doi.org/10.1002/jsfa.3999

    Article  Google Scholar 

  56. Sousa I, Gouveia L, Batista AP, Raymundo A, Bandarra NM (2008) Microalgae in novel food products. Food Chem Res Develop 75–112

  57. Park WS, Kim HJ, Li M, Lim DH, Kim J, Kwak SS, Kang CM, Ferruzzi MG, Ahn MJ (2018) Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities. Molecules 23:2065. https://doi.org/10.3390/molecules23082065

    Article  Google Scholar 

  58. Nouri E, Abbasi H, Rahimi E (2018) Effects of processing on stability of water-and fat-soluble vitamins, pigments (C-phycocyanin, carotenoids, chlorophylls) and colour characteristics of Spirulina platensis. Qual Assur Saf Crop 10:335–349. https://doi.org/10.3920/QAS2018.1304

    Article  Google Scholar 

  59. Khazaei Pool E, Shahidi F, Mortazavi SA, Azizpour M, Daneshzad E (2016) Examination of the effect of Spirulina platensis microalgae on drying kinetics and the color change of kiwifruit pastille. J Food Meas Charact 10:634–642. https://doi.org/10.1007/s11694-016-9347-7

    Article  Google Scholar 

  60. Tello-Ireland C, Lemus-Mondaca R, Vega-Gálvez A, López J, Di Scala K (2011) Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis. LWT-Food Sci Technol 44:2112–2118. https://doi.org/10.1016/j.lwt.2011.06.008

    Article  Google Scholar 

  61. Stramarkou M, Papadaki S, Kyriakopoulou K, Tzovenis I, Chronis M, Krokida M (2021) Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J Aquat Food Prod Technol 30:498–516. https://doi.org/10.1080/10498850.2021.1900969

    Article  Google Scholar 

  62. Shi J, Maguer ML (2000) Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr 40:1–42. https://doi.org/10.1080/10408690091189275

    Article  Google Scholar 

  63. de Farias NF, Demarco M, Tribuzi G (2019) Drying and quality of microalgal powders for human alimentation. In: Vítová M (ed) Microalgae-from physiology to application. IntechOpen, London, pp 71–88

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Research Council of Shahid Bahonar University of Kerman for financial support.

Funding

The authors did not receive any fund for this study.

Author information

Authors and Affiliations

Authors

Contributions

Zeinab Rezvani—Design and development of the concept, carrying out the experiments, writing the manuscript. Hamid Mortezapour—Supervising the project, discussing the results and contribution to the final manuscript. Mehran Ameri—Helping supervise the project, discussing the results, and contributing to the final manuscript. Hamid-Reza Akhavan—Helping supervise the project, discussing the food analysis results, and contributing to the final manuscript. Selçuk Arslan—Contributing to the final manuscript.

Corresponding author

Correspondence to Hamid Mortezapour.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest statement

I declare no conflict of interest, and my agreement for submission of this manuscript and I claim that this work is novel and has not been submitted elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvani, Z., Mortezapour, H., Ameri, M. et al. Drying of Spirulina with a continuous infrared-assisted refractance window™ dryer equipped with a photovoltaic-thermal solar collector. Heat Mass Transfer 58, 1739–1755 (2022). https://doi.org/10.1007/s00231-022-03210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03210-5

Navigation