Skip to main content
Log in

Effects of nonlinear optical parameters on the thermal performance of an indirect solar dryer under natural convection regime

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Numerical analyses have been performed in order to understand the thermal behavior of an indirect solar dryer. However, not much attention has been given to the nonlinear optical properties influence on its dynamic. This paper studies the effect of nonlinear absorption and transmission parameters on the thermal performance of an indirect solar dryer. The main goal was to improve the output energy of collector and drying chamber. The nonlinear absorption and transmission coefficients are established as quadratic functions of the temperature. Theoretical investigations are conducted for the proposed nonlinear model. On the basis of these investigations, the established mathematical equations describing the solar drying system are solved numerically using a developed MATLAB program. A specific application is first made for constant absorption coefficient distribution and the predictions are in excellent agreement with the experimental results from the literature. Predictions of nonlinear optical absorption and transmission coefficients variation are then performed. A comparison of the results with constant and nonlinear absorptivity and transmissivity shows a significant 10% enhancement of the collector thermal performance by using nonlinear parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\({c}_{pi}\) :

Specific heat of the element \(\left\{i\right\}\) (J/Kg °C)

\({h}_{di\_j}\) :

Sonduction heat transfer coefficient between the surface \(\left\{i\right\}\) and the surface \(\left\{j\right\}\) (W/m2 °C)

\({h}_{ci\_j}\) :

Convection heat transfer coefficient between element \(\left\{i\right\}\) and element \(\left\{j\right\}\) (W/m2 °C)

\({h}_{ri\_j}\) :

Radiation heat transfer coefficient between the surface \(\left\{i\right\}\) and the surface \(\left\{j\right\}\) (W/m2 °C)

i:

Space node along the collector length

j:

Space node along the drying unit height

k:

Time node

\(L\) :

Length (m)

\(l\) :

Width (m)

\({m}_{i}\) :

Masse of element \(\left\{i\right\}\) (Kg)

\(n\) :

Degree of the quadratic nonlinear property

\({N}_{u}\) :

Nusselt number (dimensionless)

\(Q\) :

Air flowing rate (Kg/s)

\({S}_{i}\) :

Surface of element \(\left\{i\right\}\) (m2)

\({T}_{S}\) :

Temperature of the sun (°C)

\({T}_{0}\) :

Temperature of the soil surface (°C)

\({T}_{1}\) :

Temperature of the sky (°C)

\({T}_{2}\) :

Ambient air temperature (°C)

\({T}_{3}\) :

Temperature of the first glass cover (°C)

\({T}_{4}\) :

Temperature of the second glass cover (°C)

\({T}_{5}\) :

Temperature of the outlet air (°C)

\({T}_{6}\) :

Temperature of the first absorber plate (°C)

\({T}_{7}\) :

Temperature of the second absorber plate (°C)

\({T}_{8}\) :

Temperature of the inlet air (°C)

\({T}_{9}\) :

Temperature of the aluminium plate (°C)

\({T}_{10}\) :

Temperature of insulating material (°C)

\({T}_{11}\) :

Temperature of bottom surface of the collector (°C)

\({T}_{12}\) :

Drying air temperature (°C)

\({T}_{13}\) :

Internal dryer wall temperature (°C)

\({T}_{14}\) :

Drying unit insulator material temperature (°C)

\({T}_{15}\) :

External dryer wall temperature (°C)

\({T}_{16}\) :

Top dryer outer wall temperature (°C)

\({T}_{17}\) :

Top dryer inner plate temperature (°C)

\({T}_{18}\) :

Bottom dryer inner plate temperature (°C)

\({T}_{19}\) :

Bottom dryer outer plate temperature (°C)

\(t\) :

Time (s)

\(V\) :

Air speed (m/s)

x, y:

Space coordinate (m

\(\alpha\) :

Absorptivity

\(\gamma\) :

Constant parameter (1/°C)

\(\beta\) :

Constant parameter (1/ °C 2)

\(\delta\) :

Thickness (m)

\(\Theta\) :

Inclination of the glass cover (°)

\(\varepsilon\) :

Emissivity

\(\eta\) :

Efficiency

\(\rho\) :

Density (kg/m3)

\(\lambda\) :

Conductivity (W/m °C)

\(\sigma\) :

Stephan Boltzman constant (W/m2 K4)

\(\tau\) :

Transmissivity

\(avr\) :

Average

\(max\) :

Maximum

References

  1. Ekechukwu OV, Norton B (1999) Review of solar-energy drying systems: an overview of drying principles and theory. Energ Conv and Manag 40(6):593–613

    Article  Google Scholar 

  2. Etim PJ, Eke AB, Simonyan KJ (2020) Design and development of an active indirect solar dryer for cooking banana. Sci African 8:e00463

  3. Chouicha S, Boubekri A, Mennouche D, Berrbeuh MH (2013) Solar drying of sliced potatoes. An experimental investigation. Energy Proc 36:1276–1285

    Article  Google Scholar 

  4. Banout J, Kucerova I, Marek S (2012) Using a double-pass solar drier for jerky drying. Energ Proc 30:738–744

    Article  Google Scholar 

  5. Yaldýz O, Ertekýn C (2001) Thin layer solar drying of some vegetables. Drying Technol 19(3–4):583–597

    Article  Google Scholar 

  6. Kumar M, Sansaniwal SK, Khatak P (2016) Progress in solar dryers for drying various commodities. Renew and Sust Energ Rev 55:346–360

    Article  Google Scholar 

  7. Sharma A, Sharma N (2012) Construction and performance analysis of an indirect solar dryer integrated with solar air heater. Proc Eng 38:3260–3269

    Article  Google Scholar 

  8. Ugwu SN, Ugwuishiwu BO, Ekechukwu OV, Njoku H, Ani AO (2015) Design, construction, and evaluation of a mixed mode solar kiln with black-painted pebble bed for timber seasoning in a tropical setting. Renew Sust Energ Rev 41:1404–1412

    Article  Google Scholar 

  9. Sharma VK, Colangelo A, Spagna G (1993) Experimental performance of an indirect type solar fruit and vegetable dryer. Energ conv and manag 34(4):293–308

    Article  Google Scholar 

  10. Essalhi H, Tadili R, Bargach MN (2018) Comparison of thermal performance between two solar air collectors for an indirect solar dryer. J Phys Sci 29:55–65

    Article  Google Scholar 

  11. Simo-Tagne M, Zoulalian A, Remond R, Rogaume Y, Bonoma B (2017) Modeling and simulation of an industrial indirect solar dryer for Iroko wood (Chlorophora excelsa) in a tropical environment. Maderas Ciencia technol 19:95–112

    Google Scholar 

  12. Hao W, Liu S, Mi B, Lai Y (2020) Mathematical modeling and performance analysis of a new hybrid solar dryer of lemon slices for controlling drying temperature. Energies 13:1–23

    Google Scholar 

  13. Salvatierra-Rojas A, Torres-Toledo V, Müller J (2020) Influence of surface reflection (Albedo) in simulating the sun drying of paddy rice. Appl Sci 10:50–92

    Article  Google Scholar 

  14. Tchinda R, Kaptouom E, Njomo D (2009) A review of the mathematical models for predicting solar air heaters systems. Renew Sustain Energy Rev 13:1734–1759

    Article  Google Scholar 

  15. Haldorai S, Gurusany S, Pradhapraj M (2019) A review on thermal energy storage systems in solar air heaters. Int J Energy Res 43:60–77

    Article  Google Scholar 

  16. Donchi CAP, Lemoubou EL, Kamdem THT, Tchinda R (2021) A thermal node model for predicting heat transfer in mixed type solar dryer system. Am J Energy Res 9:6–20

    Article  Google Scholar 

  17. Carmona M, Palacio M (2019) Thermal modeling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions. Sol Energy 177:620–633

    Article  Google Scholar 

  18. Khaldi S, Korti AN, Abboudi S (2018) Applying CFD for studying the dynamic and thermal behavior of an indirect solar dryer: Parametric analysis. Mech Mech Eng 22:253–272

    Article  Google Scholar 

  19. Priyam A, Chand P (2019) Experimental investigations on thermal performance of solar air heater with wavy fin absorbers. Heat Mass Transf 55(9):2651–2666

    Article  Google Scholar 

  20. Abo-Elfadl S, Hassan H, El-Dosoky MF (2020) Study of the performance of double pass solar air heater of a new designed absorber: an experimental work. Sol Energy 198:479–489

    Article  Google Scholar 

  21. Srinivasan R, Balusamy T, Sakthivel M (2018) Numerical model of natural convective heat transfer within a solar dryer using an indirect double pass collector. Int J Ambient Energy 39:830–839

    Article  Google Scholar 

  22. Ramirez C, Palacio M, Carmona M (2020) Reduced model and comparative analysis of the thermal performance of indirect solar dryer with and without PCM. Energies 13:1–18

    Google Scholar 

  23. Vijayan S, Arjunan TV, Kumar A (2016) Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innov Food Sci Emerg Technol 36:59–67

    Article  Google Scholar 

  24. Shrivastava V, Kumar A (2016) Experimental investigation on the comparison of fenugreek drying in an indirect solar dryer and under open sun. Heat Mass Transf 52(9):1963–1972

    Article  Google Scholar 

  25. Arunsandeep G, Lingayat A, Chandramohan VP, Raju VRK, Reddy KS (2018) A numerical model for drying of spherical object in an indirect type solar dryer and estimating the drying time at different moisture level and air temperature. Int J Green Energy 15(3):189–200

    Article  Google Scholar 

  26. El-Sebaii AA, Aboul-Enein S, Ramadan MR, El-Gohary HG (2002) Experimental investigation of an indirect type natural convection solar dryer. Energ Conv Manag 43(16):2251–2266

    Article  Google Scholar 

  27. Xiao L, Wu SY, Zhang QL, Li YR (2012) Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger. Heat Mass Transf 48(7):1167–1176

    Article  Google Scholar 

  28. Sreekumar A, Manikantan PE, Vijayakumar K (2008) Performance of indirect solar cabinet dryer. Energ Conv Manag 49(6):1388–1395

    Article  Google Scholar 

  29. Sharma VK, Colangelo A, Spagna G (1992) Investigation of an indirect type multi-shelf solar fruit and vegetable dryer. Renew energ 2(6):577–586

    Article  Google Scholar 

  30. Goyal RK, Tiwari GN (1997) Parametric study of a reverse flat plate absorber cabinet dryer: a new concept. Sol Energy 60(1):41–48

    Article  Google Scholar 

  31. Farkas I, Seres I, Meszaros CS (1999) Analytical and experimental study of a modular solar dryer. Renew Energ 16(1–4):773–778

    Article  Google Scholar 

  32. Maiti S, Patel P, Vyas K, Eswaran K, Ghosh PK (2011) Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Sol Energy 85(11):2686–2696

    Article  Google Scholar 

  33. Mahapatra A, Tripathy PP (2019) Experimental investigation and numerical modeling of heat transfer during solar drying of carrot slices. Heat Mass Transf 55(5):1287–1300

    Article  Google Scholar 

  34. Lingayat A, Chandramohan VP, Raju VRK, Suresh S (2021) Drying kinetics of tomato (Solanum lycopersicum) and Brinjal (Solanum melongena) using an indirect type solar dryer and performance parameters of dryer. Heat Mass Transf 57(5):853–872

    Article  Google Scholar 

  35. Berinyuy JE, Tangka JK, Fotso GMW (2012) Enhancing natural convection solar drying of high moisture vegetables with heat storage. Agric Eng Int CIGR J 14(1):141–148

    Google Scholar 

  36. Prakash O, Kumar A (2017) Solar drying technology: Concept, design, testing, modeling, economics, and environment. Springer

    Book  Google Scholar 

  37. El Khadraoui A, Bouadila S, Kooli S, Farhat A, Guizani A (2017) Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. J Clean Prod 148:37–48

    Article  Google Scholar 

  38. Essalhi H, Tadili R, Bargach MN (2017) Conception of a solar air collector for an indirect solar dryer. Pear Dry Test Energy Proc 141:29–33

    Article  Google Scholar 

  39. Tambunan DRS, Sibagariang YP, Ambarita H, Napitupulu FH, Kawai H (2018) Numerical study on the effect on the performance of flat plate collector of a water heater. J Phys: Conf Ser 978

  40. Gatea AA (2011) Performance evaluation of a mixed-mode solar dryer for evaporating moisture beans. J Agri Biotech and Sust Dev 3:65–71

    Google Scholar 

  41. Tchinda R, Kaptouom E, Njomo D (1998) Study of the CPC collector thermal behavior. Energy Conv Manag 39:1395–1406

    Article  Google Scholar 

  42. Duffie JA, Beckman WA (2013) Solar radiation. Solar Engineering of Thermal Processes, 4th edn. Hoboken, Wiley, New Jersey pp 12–20

  43. Ramani BM, Gupta A, Kumar R (2010) Performance of a double pass solar air collector. Sol Energy 84:1929–1937

    Article  Google Scholar 

  44. Moummi N, Chabane F, Benramache S (2013) Thermal efficiency analysis of a single-flow solar air heater with different mass flow rates in a smooth plate. Front Heat Mass Transf 4:2–5

    Google Scholar 

  45. Chabane F, Moummi N, Brima A (2018) Experimental study of thermal efficiency of a solar air heater with an irregularity element on absorber plate. Int J Heat Technol 36:855–860

    Article  Google Scholar 

  46. Yousef B, Adam NM (2008) Performance analysis for flat plate collector with and without porous media. J Energy Southern Africa 19:32–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Pamela Aghogue Donchi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donchi, C.P.A., Lemoubou, E.L., Kamdem, H.T.T. et al. Effects of nonlinear optical parameters on the thermal performance of an indirect solar dryer under natural convection regime. Heat Mass Transfer 58, 1723–1737 (2022). https://doi.org/10.1007/s00231-022-03198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03198-y

Navigation