Skip to main content
Log in

Heat transfer augmentation in a double-pipe heat exchanger with dimpled twisted tape inserts: an experimental study

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effect of the geometrical structure of dimpled twisted tape inserts in the inner pipe of a double-pipe heat exchanger (HX) on the Nusselt number (Nu), friction factor (f), and thermal performance factor (η) was experimentally investigated. Various geometries of twisted tape (TT) including typical, continuous, continuous winglet, and discontinuous louvered twisted tape geometries in both dimpled and non-dimpled forms were considered. The Reynolds number in the annular space was selected to be constant at 11000 and a range of Reynolds number between 5000 and 9500 was considered for cold flow in the inner pipe. The results indicated that all these inserts significantly augmented the Nu and friction factor compared to the plain pipe, but under the same conditions, the dimpled twisted tapes exhibited a higher Nu, friction factor, and thermal performance in comparison with similar non-dimpled twisted tapes. The discontinuous dimpled louvered twisted tape achieved the maximum Nu and thermal performance as compared with the other twisted tape inserts. The maximum obtained thermal performance factor of the heat exchanger is 1.24 at Re = 5300 for the dimpled louvered twisted tape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Heat transfer surface area \({\mathrm{m}}^{2}\)

\({\mathrm{C}}_{\mathrm{p}}\) :

Specific heat \(\mathrm{j}/\mathrm{kg K}\)

d:

Pipe diameter [m]

f:

Friction coefficient

H:

Heat transfer [W]

h:

Heat transfer coefficient \(\mathrm{W}/{\mathrm{m}}^{2}\mathrm{K}\)

k:

Thermal conductivity [W/m K]

L:

Length [m]

LMTD:

Logarithmic mean temperature difference [K]

\(\dot{\mathrm{m}}\) :

Mass flow rate \(\mathrm{kg}/\mathrm{s}\)

Nu:

Nusselt number

P:

Pressure [Pa]

P:

Pitch [m]

Pr:

Prandtl number

Q:

Volumetric flow rate [liter⁄min]

Re:

Reynolds number

T:

Temperature [K]

t:

Thickness [m]

UA:

Overall thermal conductivity [W/ K]

v:

Velocity \(\mathrm{m}/\mathrm{s}\)

w:

Width [m]

y:

Twist ratio

α:

Louver angle

η:

Performance factor

μ:

Dynamic viscosity [Ns/m2]

ρ:

Density [kg/m3

an:

Annular

avg:

Average

d:

Dimple

e:

Expansion

H:

Hydraulic

i:

Inlet

l:

Louver

max:

Maximum

n:

Nozzle

o:

Outlet

sp:

Smooth

t:

Twisted

tt:

Twisted tape

w:

Wet and wall

References

  1. Waghole DR (2018) Experimental and numerical investigation on heat transfer augmentation in a circular tube under forced convection with annular differential blockages/inserts, Heat Mass Transf Und Stoffuebertragung 54. https://doi.org/10.1007/s00231-018-2276-8.

  2. Bai C, Cao H, Zhang G, Tian M (2019) Diverging small channel for condensation heat transfer enhancement. Int J Heat Mass Transf 133:218–225. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.144

    Article  Google Scholar 

  3. Lin CX, Moosavi R, Jalil E (2021) Turbulent forced convection nanofluid flow over an inclined forward facing step. Heat Transf Res 51:1221–1240. https://doi.org/10.1615/HeatTransRes.2020034082.

  4. Moosavi R, Banihashemi M, Lin CX (2021) Thermal performance evaluation of a microchannel with different porous media insert configurations. Int J Numer Methods Heat Fluid Flow. https://doi.org/10.1108/HFF-02-2021-0104

    Article  Google Scholar 

  5. So RMC (2020) Reynolds analogy and turbulent heat transfer on rotating curved surfaces. Heat Mass Transf Und Stoffuebertragung 56. https://doi.org/10.1007/s00231-020-02901-1.

  6. Moosavi R, Vaisi A, Javaherdeh K (2021) Investigation of the geometrical structure of louvered fins in fin-tube heat exchangers for determining the minimum distance of the headers. J Mech Sci Technol 35. https://doi.org/10.1007/s12206-021-0335-4.

  7. Javaherdeh K, Vaisi A, Moosavi R (2018) The effects of fin height, fin-tube contact thickness and Louver length on the performance of a compact fin-and-tube heat exchanger. Int J Heat Technol 36:825–834. https://doi.org/10.18280/ijht.360307.

  8. Brodnianska Z (2019) Experimental investigation of convective heat transfer between corrugated heated surfaces of rectangular channel. Heat Mass Transf Und Stoffuebertragung 55. https://doi.org/10.1007/s00231-019-02649-3.

  9. Moosavi R, Banihashemi M, Lin CX, Abel Chuang PY (2021) Combined effects of a microchannel with porous media and transverse vortex generators (TVG) on convective heat transfer performance. Int J Therm Sci 166. https://doi.org/10.1016/j.ijthermalsci.2021.106961.

  10. Hata K, Fukuda K, Masuzaki S (2018) Conductive sub-layer of twisted-tape-induced swirl-flow heat transfer in vertical circular tubes with various twisted-tape inserts. Heat Mass Transf Und Stoffuebertragung 54. https://doi.org/10.1007/s00231-017-2194-1.

  11. Javaherdeh K, Vaisi A, Moosavi R, Esmaeilpour M (2017) Experimental and numerical investigations on louvered fin-and-tube heat exchanger with variable geometrical parameters. J Therm Sci Eng Appl 9. https://doi.org/10.1115/1.4035449.

  12. Barzegar A, Jalali Vahid D (2019) Numerical study on heat transfer enhancement and flow characteristics of double pipe heat exchanger fitted with rectangular cut twisted tape. Heat Mass Transf Und Stoffuebertragung 55. https://doi.org/10.1007/s00231-019-02667-1.

  13. Holagh SG, Abdous MA, Shamsaiee M, Saffari H (2020) Assessment of heat transfer enhancement technique in flow boiling conditions based on entropy generation analysis: twisted-tape tube. Heat Mass Transf Und Stoffuebertragung 56. https://doi.org/10.1007/s00231-019-02705-y.

  14. Yadav RJ, Kore SS, Joshi PS (2018) Correlations for heat transfer coefficient and friction factor for turbulent flow of air through square and hexagonal ducts with twisted tape insert. Heat Mass Transf Und Stoffuebertragung 54. https://doi.org/10.1007/s00231-017-2241-y.

  15. Arunachalam U, Edwin M (2018) Experimental studies on laminar flow heat transfer in nanofluids flowing through a straight circular tube with and without V-cut twisted tape insert. Heat Mass Transf Und Stoffuebertragung 54. https://doi.org/10.1007/s00231-017-2162-9.

  16. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—transition and turbulent flows. J Heat Transfer 115. https://doi.org/10.1115/1.2911384.

  17. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part I—Laminar flows. J Heat Transfer 115. https://doi.org/10.1115/1.2911383.

  18. Khoshvaght-Aliabadi M, Davoudi S, Dibaei MH (2018) Performance of agitated-vessel U tube heat exchanger using spiky twisted tapes and water based metallic nanofluids. Chem Eng Res Des 133:26–39. https://doi.org/10.1016/j.cherd.2018.02.030

    Article  Google Scholar 

  19. Azizi Z, Rostampour V, Jafarmadar S, Khorasani S, Abdzadeh B (2021) Performance evaluation of horizontal straight tube equipped with twisted tape turbulator, with air–water two-phase flow as working fluid. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10809-z

    Article  Google Scholar 

  20. Khatua AK, Kumar P, Singh HN, Kumar R (2016) Measurement of enhanced heat transfer coefficient with perforated twisted tape inserts during condensation of R-245fa. Heat Mass Transf Und Stoffuebertragung 52. https://doi.org/10.1007/s00231-015-1589-0.

  21. Kumar B, Kumar M, Patil AK, Jain S (2019) Effect of V cut in perforated twisted tape insert on heat transfer and fluid flow behavior of tube flow: An experimental study. Exp Heat Transf 32. https://doi.org/10.1080/08916152.2018.1545808.

  22. Saha SK, Gaitonde UN, Data AW (1992) Heat transfer and pressure drop characteristics of laminar flow in a circular tube fitted with regularly spaced twisted-tape elements, Exp Therm Fluid Sci v

  23. Saha SK, Gaitonde UN, Date AW (1989) Heat transfer and pressure drop characteristics of laminar flow in a circular tube fitted with regularly spaced twisted-tape elements. Exp Therm Fluid Sci 2. https://doi.org/10.1016/0894-1777(89)90020-4.

  24. Eiamsa-Ard P, Piriyarungroj N, Thianpong C, Eiamsa-Ard S (2014) A case study on thermal performance assessment of a heat exchanger tube equipped with regularly-spaced twisted tapes as swirl generators. Case Stud Therm Eng 3. https://doi.org/10.1016/j.csite.2014.04.002.

  25. Sarada SN, Raju ASR, Radha KK, Sunder LS (2011) Enhancement of heat transfer using varying width twisted tape inserts. Int J Eng Sci Technol. https://doi.org/10.4314/ijest.v2i6.63702

    Article  Google Scholar 

  26. Eiamsa-ard S, Promvonge P (2010) Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.023

    Article  Google Scholar 

  27. Wongcharee K, Eiamsa-ard S (2011) Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes. Int Commun Heat Mass Transf 38. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.007.

  28. Abolarin SM, Everts M, Meyer JP (2019) Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime. Int J Heat Mass Transf 133. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.107.

  29. Rahimi-Esbo M, Vazifeshenas Y, Asboei AK, Mohammadyari R, Vandana V (2018) Numerical simulation of twisted tapes fitted in circular tube consisting of alternate axes and regularly spaced tapes. Acta Sci Technol 40. https://doi.org/10.4025/actascitechnol.v40i1.37348.

  30. Murugesan P, Mayilsamy K, Suresh S (2011) Heat transfer in tubes fitted with trapezoidal-cut and plain twisted tape inserts. Chem Eng Commun 198. https://doi.org/10.1080/00986445.2011.545294.

  31. Salam B, Biswas S, Saha S, Bhuiya MMK (2013) Heat transfer enhancement in a tube using rectangular-cut twisted tape insert. Procedia Eng. https://doi.org/10.1016/j.proeng.2013.03.094

    Article  Google Scholar 

  32. Murugesan P, Mayilsamy K, Suresh S (2010) Turbulent heat transfer and pressure drop in tube fitted with square-cut twisted tape. Chinese J Chem Eng 18. https://doi.org/10.1016/S1004-9541(10)60264-9.

  33. Eiamsa-Ard S, Promvonge P (2010) Thermal characteristics in round tube fitted with serrated twisted tape. Appl Therm Eng 30. https://doi.org/10.1016/j.applthermaleng.2010.03.026.

  34. Nakhchi ME, Esfahani JA (2019) Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem Eng Process - Process Intensif. https://doi.org/10.1016/j.cep.2019.107533

    Article  Google Scholar 

  35. Nakhchi ME, Esfahani JA (2019) Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int J Therm Sci 138. https://doi.org/10.1016/j.ijthermalsci.2018.12.039.

  36. Singh SK, Sarkar J (2021) Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. J Therm Anal Calorim 143. https://doi.org/10.1007/s10973-020-09380-w.

  37. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C (2010) Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2009.09.006

    Article  Google Scholar 

  38. Yaningsih I, Wijayanta AT (2017) Concentric tube heat exchanger installed by twisted tapes using various wings with alternate axes. AIP Conf Proc. https://doi.org/10.1063/1.4968258

    Article  Google Scholar 

  39. Eiamsa-ard S, Thianpong C, Eiamsa-ard P (2010) Turbulent heat transfer enhancement by counter/co-swirling flow in a tube fitted with twin twisted tapes. Exp Therm Fluid Sci 34. https://doi.org/10.1016/j.expthermflusci.2009.09.002.

  40. Chokphoemphun S, Pimsarn M, Thianpong C, Promvonge P (2015) Thermal performance of tubular heat exchanger with multiple twisted-tape inserts. Chinese J Chem Eng 23. https://doi.org/10.1016/j.cjche.2015.01.003.

  41. Datt R, Bhist MS, Kothiyal AD, Maithani R, Kumar A (2018) Effect of square wing with combined solid ring twisted tape inserts on heat transfer and fluid flow of a circular tube heat exchanger. Int J Green Energy 15. https://doi.org/10.1080/15435075.2018.1525552.

  42. Piriyarungrod N, Kumar M, Thianpong C, Pimsarn M, Chuwattanakul V, Eiamsa-ard S (2018) Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes. Appl Therm Eng 136. https://doi.org/10.1016/j.applthermaleng.2018.02.097.

  43. Thianpong C, Eiamsa-Ard P, Promvonge P, Eiamsa-Ard S (2012) Effect of perforated twisted-tapes with parallel wings on heat transfer enhancement in a heat exchanger tube. Energy Procedia. https://doi.org/10.1016/j.egypro.2011.12.1149

    Article  MATH  Google Scholar 

  44. Zhang S, Lu L, Dong C, Cha SH (2019) Thermal characteristics of perforated self-rotating twisted tapes in a double-pipe heat exchanger. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.114296

    Article  Google Scholar 

  45. Vaisi A, Javaherdeh K, Moosavi R (2022) Condensation heat transfer performance in multi-fluid compact heat exchangers with wavy and strip fins. Int J Heat Mass Transf 182. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121968.

  46. Vaisi A, Javaherdeh K, Moosavi R (2022) Experimental investigation of the thermal performance in a single-component two-phase flow in multistream multi-fluid plate-fin heat exchangers. Int J Therm Sci 171. https://doi.org/10.1016/j.ijthermalsci.2021.107194.

  47. Vaisi A, Moosavi R, Javaherdeh K, Sheikh Zahed MV, Soltani MM (2021) Experimental examination of condensation heat transfer enhancement with different perforated tube inserts. Exp Heat Transf. https://doi.org/10.1080/08916152.2021.1991510.

  48. Kumar B, Patil AK, Kumar M, Jain S (2020) Performance enhancement by perforated twisted tape tube insert with single and double v cuts in a heat exchanger tube. Heat Transf Res. https://doi.org/10.1615/HeatTransRes.2019029789

    Article  Google Scholar 

  49. Nanan K, Thianpong C, Promvonge P, Eiamsa-ard S (2014) Investigation of heat transfer enhancement by perforated helical twisted-tapes. Int Commun Heat Mass Transf 52. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.018.

  50. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M (2014) 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Procedia. https://doi.org/10.1016/j.egypro.2014.03.040

    Article  Google Scholar 

  51. Zheng L, Xie Y, Zhang D (2017) Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid. Int J Heat Mass Transf 111. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062.

  52. Vaisi A, Moosavi R, Lashkari M, Mohsen Soltani M (2020) Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers. Chem Eng Process Process Intensif 154:108028. https://doi.org/10.1016/j.cep.2020.108028.

  53. Kakaç S, Liu H (2002) Heat exchangers: Selection, rating, and thermal design, second edition

  54. Kupprn T (2000) Heat exchanger handbook design, marcei dekker,inc., New York Basel

  55. Streeter VL, Wylie EB (1979) Fluid mechanics (seventh ed.)

  56. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1. https://doi.org/10.1016/0894-1777(88)90043-X.

  57. Salem MR, Althafeeri MK, Elshazly KM, Higazy MG, Abdrabbo MF (2017) Experimental investigation on the thermal performance of a double pipe heat exchanger with segmental perforated baffles. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2017.08.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mohsen Soltani or Rouhollah Moosavi.

Ethics declarations

Conflict of interest

The authors of this paper declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M.M., Gorji-Bandpy, M., Vaisi, A. et al. Heat transfer augmentation in a double-pipe heat exchanger with dimpled twisted tape inserts: an experimental study. Heat Mass Transfer 58, 1591–1606 (2022). https://doi.org/10.1007/s00231-022-03189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03189-z

Keywords

Navigation