Skip to main content
Log in

Theoretical analysis on condensation heat transfer on microstructured hybrid hydrophobic-hydrophilic tube

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Condensation is a phase-change process in which vapor condenses to liquid at constant pressure. Condensation occurs in the forms of dropwise and filmwise. Investigations on hybrid hydrophobic-hydrophilic surfaces show their potential to improve condensation heat transfer characteristics in particular situations, comparing to complete dropwise condensation. In the present study, condensation on the microstructured hybrid tube has been examined, considering every thermal resistance on the heat flux. Two droplet morphologies, i.e., The Cassie state and the Wenzel state, have been considered. The influence of different parameters, including tube inclination angle, saturation vapor pressure, and dropwise/filmwise area ratio, has also been investigated. According to the results, droplet interaction with the surface significantly influences the heat transfer characteristics so that in most cases, the Wenzel state has a more considerable hybrid heat flux than the Cassie state. It has also been witnessed that the vertical tube has a higher heat flux comparing to tubes in other angles. A smaller liquid film thickness and a higher saturation vapor temperature were observed to have a higher heat flux. Finally, the increase in the dropwise region width decreases the droplet transition time from dropwise region to filmwise region and finally increases the hybrid heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A 1 , A 2 , A 3 :

Parameters in model

A :

Surface area (m2)

B 1 , B 2 :

Parameters in model

d :

Pillar diameter (m)

g :

Gravitational acceleration (m s2)

h :

Pillar height (m)

h fg :

Latent heat of evaporation (kJ kg1)

h i :

Interfacial heat transfer coefficient (W m2 k1)

k :

Thermal conductivity (W m1 K1)

l :

Center to center distance of the pillars (m)

L :

Liquid layer thickness (m)

Ma :

Marangoni number

n :

Population density of small droplets (m3)

N :

Population density of large droplets (m3)

N s :

Nucleation site density on the surface (m2)

P :

Vapor pressure (Mpa)

q :

Heat flux (W m2)

Q d :

Dropwise heat transfer rate (kW)

r :

Droplet radius (m)

r e :

Critical droplet radius (m)

R :

Thermal resistance (k W–1)

R g :

Specific gas constant (J kg1 K1)

T :

Temperature (K)

T c :

Critical temperature (K

α:

Thermal diffusivity (m2 s1)

αc :

Condensation coefficient

δ:

Layer thickness (m)

ΔT:

Temperature difference/drop (K)

Δθ:

Contact angle hysteresis (deg)

θ:

Contact angle (deg)

η:

Filmwise-dropwise area ratio

ρ:

Density (kg m3)

σ:

Surface tension (N m1)

τ:

Sweeping period (s)

ϕ:

Solid fraction

μ:

Condensate viscosity (N s m2)

υ:

Water vapor specific volume (kg m3)

φ:

Peripheral angle (deg)

γ:

Inclination angle (deg

a:

Advancing

c:

Droplet curvature

coat:

Hydrophobic coating

drop:

Droplet

DWC:

Dropwise condensation

FWC:

Filmwise condensation

h:

Hybrid hydrophobic-hydrophilic

int:

Interface

Ma:

Marangoni convection

max:

Maximum

min:

Minimum

n:

Small droplets

N:

Large droplets

p:

Pillar

r:

Receding

rough:

Roughness

s:

Solid surface

sat:

Saturation

v:

Vapor

w:

Water

l:

Liquid

References

  1. Wang C, Wang L, Zhao H, Du Z, Ding Z (2016) Effects of superheated steam on non-equilibrium condensation in ejector primary nozzle. Int J Refrig 67:214–226. https://doi.org/10.1016/j.ijrefrig.2016.02.022

    Article  Google Scholar 

  2. Xie J, Xu JL, Xing F, Wang ZX, Liu H (2004) The phase separation concept condensation heat transfer in horizontal tubes for low-grade energy utilization. Energy 69:787–800

    Article  Google Scholar 

  3. Xie J, Xu JL, Cheng Y, Xing F, He XT (2015) Condensation heat transfer of R245fa in tubes with and without lyophilic porous-membrane-tube insert. Int J Heat Mass Transf 88:261–275

    Article  Google Scholar 

  4. Xie J, Xu JL, Liang C, She QT, Li MJ (2019) A comprehensive understanding of enhanced condensation heat transfer using phase separation concept. Energy 172:661–674

    Article  Google Scholar 

  5. Griffith P (1985) Dropwise condensation. In: Rohsenow WP, Hartnett JP, Ganic EN (eds) Handbook of heat transfer fundamentals. McGraw-Hill, New York, p 13

    Google Scholar 

  6. Jakob M (1936) Heat transfer in evaporation and condensation. Mech Eng 58:729–739

    Google Scholar 

  7. Ruckenstien E, Metiu H (1965) On dropwise condensation on a solid surface. Chem Eng Sci 20(3):173–180

    Article  Google Scholar 

  8. Le Fevre EJ, Rose JW (1966) A theory of heat transfer by dropwise condensation. In: Chemical Engineering Progress, Amer Inst Chemical Engineers, 345 E 47th St, New York, NY 10017, p 86

  9. Tanaka HA (1975) Theoretical study of dropwise condensation. J Heat Transf 97(1):72–78

    Article  Google Scholar 

  10. Burnside BM, Hadi HA (1999) Digital computer simulation of dropwise condensation from 21 equilibrium droplet to detectable size. Int J Heat Mass Transf 42(16):3137–3146

    Article  Google Scholar 

  11. Law BM (2001) Wetting, adsorption and surface critical phenomena. Prog Surf Sci 66(6–8):159–216

    Article  Google Scholar 

  12. Wenzel H (1957) Versuch ilber Tropf enkondensation Allg Warmetech 8:53

    Google Scholar 

  13. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  14. Miljkovic N, Enright R, Wang EN (2012) Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6:1776–1785

    Article  Google Scholar 

  15. Kim H, Nam Y (2016) Condensation behaviors and resulting heat transfer performance of nano engineered copper surfaces. Int J Heat Mass Transf 93:286–292

    Article  Google Scholar 

  16. Tianqing L, Chunfeng M, Xiangyu S, Songbai X (2007) Mechanism study on formation of initial condensate droplets. AIChE J 53(4):1050–1055

    Article  Google Scholar 

  17. Kim S, Kim KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transf 133(8):081502

  18. Rausch MH, Leipertz A, Froba AP (2010) Dropwise condensation of steam on ion implanted titanium surfaces. Int J Heat Mass Transf 53(1–3):423–430

    Article  Google Scholar 

  19. Vemuri S, Kim KJ (2006) An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 49:649–657. https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.016

    Article  Google Scholar 

  20. Mei M, Yu B, Zou M, Luo L (2011) A numerical study on growth mechanism of dropwise condensation. Int J Heat Mass Transf 54:2004–2013

    Article  Google Scholar 

  21. Glicksman LR, Hunt AW (1972) Numerical simulation of dropwise condensation. Int J Heat Mass Transf 15:2251–2269

    Article  Google Scholar 

  22. Bansal GD, Khandekar S, Muralidhar K (2009) Measurement of heat transfer during dropwise condensation of water on polyethylene. Nanoscale Microscale Thermophys Eng 13(3):184–201

    Article  Google Scholar 

  23. Das AK, Kilty HP, Marto PJ, Andeen GB, Kumar A (2000) The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes. ASME J Heat Transf 122(2):278–286

    Article  Google Scholar 

  24. Ma XH, Chen JB, Xu DQ, Lin JF, Ren CS, Long ZH (2002) Influence of processing conditions of polymer film on dropwise condensation heat transfer. Int J Heat Mass Transf 45(12):3405–3411

    Article  Google Scholar 

  25. Pang GX, Dale JD, Kwok DY (2005) An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry. Int J Heat Mass Transf 48(2):307–316

    Article  Google Scholar 

  26. Yu BM, Cheng P (2002) Fractal models for the effective thermal conductivity of bidispersed porous media. J Thermophys Heat Transf 16(1):22–29

    Article  Google Scholar 

  27. Maa JR (1978) Drop size distribution and heat flux of dropwise condensation. Chem Eng J 16:171–176

    Article  MathSciNet  Google Scholar 

  28. Hu HW, Tang GH (2014) Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube. Appl Therm Eng 62:671–679

    Article  Google Scholar 

  29. Choi SU, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: ASME International Mechanical Engineering Congress & Exposition, American Society of Mechanical Engineers, San Francisco

  30. Masuda H, Ebata A, Teramae K (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7(4):227–233

    Article  Google Scholar 

  31. Keblinski P, Phillpot S, Choi S, Eastman J (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  Google Scholar 

  32. Cheng K, Kim S, Lee S, Kim KJ (2015) Internal dropwise condensation: Modeling and experimental framework for horizontal tube condensers. Int J Heat Mass Transf 83:99–108

    Article  Google Scholar 

  33. Bahrami HRT, Saffari H (2017) Theoretical study of stable dropwise condensation on an inclined micro-nano-structured tube. Int J Refrig 75:141–154

    Article  Google Scholar 

  34. Peng B, Ma X, Lan Z, Xu W, Wen R (2015) Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic–hydrophilic hybrid surfaces. Int J Heat Mass Transf 83:27–38

    Article  Google Scholar 

  35. Yamauchi A, Kumagai S, Takeyama T (1986) Condensation heat transfer on various dropwise-filmwise coexisting surface. Heat Transf Jpn Res 15:50–64

    Google Scholar 

  36. Ma XH, Wang BX, Xu DQ et al (1998) Filmwise condensation heat transfer enhancement with dropwise and filmwise coexisting condensation surfaces. Chin J Chem Eng 2(6):98–102

    Google Scholar 

  37. Grooten MHM, van der Geld CWM (2011) Dropwise condensation from flowing air-steam mixtures: diffusion resistance assessed by controlled drainage. Int J Heat Mass Transf 54:4507–4517

    Article  Google Scholar 

  38. Grooten MHM, van der Geld CWM (2012) Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage. Int J Therm Sci 54:220–229

    Article  Google Scholar 

  39. Baghel V, Sikarwar BS, Muralidhar K (2019) Modeling of heat transfer through a liquid droplet. Heat Mass Transf 55(5):1371–1385

    Article  Google Scholar 

  40. Phadnis A, Rykaczewski K (2017) The effect of Marangoni convection on heat transfer during dropwise condensation on hydrophobic and omniphobic surfaces. Int J Heat Mass Transf 115:148–158

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Saffari.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An increase in contact angle decreases the hybrid heat flux.

• An increase in contact angle hysteresis decreases the hybrid heat flux.

• Vertical tube showed better heat transfer performance than horizontal one.

• In equal condition, Wenzel model has better heat transfer characteristics.

• Smaller pillar heights have the best heat transfer performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminian, E., Kamali, M., Vatanjoo, E. et al. Theoretical analysis on condensation heat transfer on microstructured hybrid hydrophobic-hydrophilic tube. Heat Mass Transfer 58, 1207–1221 (2022). https://doi.org/10.1007/s00231-021-03170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03170-2

Navigation