Skip to main content
Log in

Diffusion in hierarchical silica monoliths: impact of pore size and probe molecule

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The silica monoliths were prepared by a combination of sol-gel synthesis, pore templating, and a process of phase separation. The as-prepared monoliths are characterized by meso- and macroporosity. The pore size significantly differs for each sample depending on the preparation conditions. The transport properties of the monoliths were investigated using benzene, isopropanol, hexane, and methane as probing molecules. The effective diffusion coefficients in the monoliths were estimated based on the second Fick’s law of diffusion. The obtained diffusivities are quite similar for different samples, demonstrating that the diffusion occurs mainly in the macropores of the monolith. The values of the diffusion coefficients were found to fall outside the Knudsen prediction. In addition, it was investigated that the benzene and hexane transport in the monolith sample with a bimodal mesopores distribution does not follow the Fick’s diffusion law. To describe the mass transfer of the benzene and hexane in this sample the time-fractional diffusion equation was utilized on a phenomenological basis. Several scenarios concerning the role of the relatively small mesopores in the hydrocarbons diffusion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakanishi K, Takahashi R, Nagakane T et al (2000) Formation of hierarchical pore structure in silica gel. J Sol-Gel Sci Technol 17:191–210. https://doi.org/10.1023/A:1008707804908

    Article  Google Scholar 

  2. Smått JH, Schunk S, Lindén M (2003) Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem Mater 15:2354–2361. https://doi.org/10.1021/cm0213422

    Article  Google Scholar 

  3. El-Safty SA (2011) Instant synthesis of mesoporous monolithic materials with controllable geometry, dimension and stability: a review. J Porous Mater 18:259–287. https://doi.org/10.1007/s10934-010-9390-4

    Article  Google Scholar 

  4. Drisko GL, Zelcer A, Caruso RA, Soler-Illia GJ de AA (2012) One-pot synthesis of silica monoliths with hierarchically porous structure. Microporous Mesoporous Mater 148:137–144. https://doi.org/10.1016/J.MICROMESO.2011.08.007

  5. Enke D, Gläser R, Tallarek U (2016) Sol-gel and porous glass-based silica monoliths with hierarchical pore structure for solid-liquid catalysis. Chemie Ing Tech 88:1561–1585. https://doi.org/10.1002/cite.201600049

    Article  Google Scholar 

  6. Ciemięga A, Maresz K, Malinowski J, Mrowiec-Białoń J (2017) Continuous-flow monolithic silica microreactors with Arenesulphonic acid groups: structure–catalytic activity relationships. Catalysts 7:255. https://doi.org/10.3390/catal7090255

    Article  Google Scholar 

  7. Szymańska K, Pietrowska M, Kocurek J et al (2016) Low back-pressure hierarchically structured multichannel microfluidic bioreactors for rapid protein digestion – proof of concept. Chem Eng J 287:148–154. https://doi.org/10.1016/J.CEJ.2015.10.120

    Article  Google Scholar 

  8. Tanaka N, Kobayashi H, Nakanishi K et al (2001) Monolithic LC columns. Anal Chem 73:420A–429A

    Article  Google Scholar 

  9. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168. https://doi.org/10.1016/J.CHROMA.2007.05.090

    Article  Google Scholar 

  10. Gritti F, Guiochon G (2012) Measurement of the eddy dispersion term in chromatographic columns. II. Application to new prototypes of 2.3 and 3.2 mm I.D. monolithic silica columns. J Chromatogr A 1227:82–95. https://doi.org/10.1016/J.CHROMA.2011.12.065

    Article  Google Scholar 

  11. Hormann K, Müllner T, Bruns S et al (2012) Morphology and separation efficiency of a new generation of analytical silica monoliths. J Chromatogr A 1222:46–58. https://doi.org/10.1016/J.CHROMA.2011.12.008

    Article  Google Scholar 

  12. González-Ruiz V, Olives AI, Martín MA (2015) Core-shell particles lead the way to renewing high-performance liquid chromatography. TrAC Trends Anal Chem 64:17–28. https://doi.org/10.1016/J.TRAC.2014.08.008

    Article  Google Scholar 

  13. Maresz K, Ciemięga A, Mrowiec-Białoń J et al (2018) Selective reduction of ketones and aldehydes in continuous-flow microreactor—kinetic studies. Catalysts 8:221. https://doi.org/10.3390/catal8050221

    Article  Google Scholar 

  14. Galarneau A, Abid Z, Said B et al (2016) Synthesis and textural characterization of Mesoporous and Meso−/macroporous silica monoliths obtained by Spinodal decomposition. Inorganics 4:9. https://doi.org/10.3390/inorganics4020009

    Article  Google Scholar 

  15. Guo X, Ding L, Kanamori K et al (2017) Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Microporous Mesoporous Mater 245:51–57. https://doi.org/10.1016/J.MICROMESO.2017.02.076

    Article  Google Scholar 

  16. Chen C, Yang S-T, Ahn W-S, Ryoo R (2009) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem Commun 3627. https://doi.org/10.1039/b905589d

  17. Koreniuk A, Maresz K, Odrozek K et al (2015) Highly effective continuous-flow monolithic silica microreactors for acid catalyzed processes. Appl Catal A Gen 489:203–208. https://doi.org/10.1016/J.APCATA.2014.10.047

    Article  Google Scholar 

  18. Maresz K, Ciemięga A, Malinowski JJ, Mrowiec-Białoń J (2019) Effect of support structure and polyamine type on CO2 capture in hierarchically structured monolithic sorbents. Chem Eng J:123175. https://doi.org/10.1016/J.CEJ.2019.123175

  19. Galarneau A, Sachse A, Said B et al (2016) Les monolithes siliciques à porosité hiérarchique: une nouvelle classe de microréacteurs pour l’Intensification des procédés en catalyse et en adsorption. Comptes Rendus Chim 19:231–247. https://doi.org/10.1016/j.crci.2015.05.017

    Article  Google Scholar 

  20. Sachse A, Hulea V, Finiels A et al (2012) Alumina-grafted macro−/mesoporous silica monoliths as continuous flow microreactors for the Diels–Alder reaction. J Catal 287:62–67. https://doi.org/10.1016/J.JCAT.2011.12.003

    Article  Google Scholar 

  21. Sachse A, Galarneau A, Fajula F et al (2011) Functional silica monoliths with hierarchical uniform porosity as continuous flow catalytic reactors. Microporous Mesoporous Mater 140:58–68. https://doi.org/10.1016/J.MICROMESO.2010.10.044

    Article  Google Scholar 

  22. Koreniuk A, Maresz K, Mrowiec-Białoń J (2015) Supported zirconium-based continuous-flow microreactor for effective Meerwein–Ponndorf–Verley reduction of cyclohexanone. Catal Commun 64:48–51. https://doi.org/10.1016/J.CATCOM.2015.01.021

    Article  Google Scholar 

  23. Ciemięga A, Maresz K, Mrowiec-Białoń J (2018) Meervein-Ponndorf-Vereley reduction of carbonyl compounds in monolithic siliceous microreactors doped with Lewis acid centres. Appl Catal A Gen 560:111–118. https://doi.org/10.1016/J.APCATA.2018.04.037

    Article  Google Scholar 

  24. Maresz K, Ciemięga A, Mrowiec-Białoń J (2020) Monolithic microreactors of different structure as an effective tool for in flow MPV reaction. Chem Eng J 379:122281. https://doi.org/10.1016/J.CEJ.2019.122281

    Article  Google Scholar 

  25. Ciemięga A, Maresz K, Mrowiec-Białoń J (2017) Continuous-flow chemoselective reduction of cyclohexanone in a monolithic silica-supported Zr(OPri)4 multichannel microreactor. Microporous Mesoporous Mater 252:140–145. https://doi.org/10.1016/J.MICROMESO.2017.06.023

    Article  Google Scholar 

  26. Koreniuk A, Maresz K, Odrozek K, Mrowiec-Białoń J (2016) Titania-silica monolithic multichannel microreactors. Proof of concept and fabrication/structure/catalytic properties in the oxidation of 2,3,6-trimethylphenol. Microporous Mesoporous Mater 229:98–105. https://doi.org/10.1016/j.micromeso.2016.04.020

    Article  Google Scholar 

  27. Szymańska K, Odrozek K, Zniszczoł A et al (2016) MsAcT in siliceous monolithic microreactors enables quantitative ester synthesis in water. Catal Sci Technol 6:4882–4888. https://doi.org/10.1039/C5CY02067K

    Article  Google Scholar 

  28. Szymańska K, Pudło W, Mrowiec-Białoń J et al (2013) Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance. Microporous Mesoporous Mater 170:75–82. https://doi.org/10.1016/J.MICROMESO.2012.11.037

    Article  Google Scholar 

  29. Zielińska K, Szymańska K, Mazurkiewicz R, Jarzębski A (2017) Batch and in-flow kinetic resolution of racemic 1-(N-acylamino)alkylphosphonic and 1-(N-acylamino)alkylphosphinic acids and their esters using immobilized penicillin G acylase. Tetrahedron Asymmetry 28:146–152. https://doi.org/10.1016/J.TETASY.2016.11.007

    Article  Google Scholar 

  30. Schneider D, Kondrashova D, Valiullin R et al (2015) Mesopore-promoted transport in microporous materials. Chemie Ing Tech 87:1794–1809. https://doi.org/10.1002/cite.201500037

    Article  Google Scholar 

  31. Wang J, Yuan Q, Dong M et al (2017) Experimental investigation of gas mass transport and diffusion coefficients in porous media with nanopores. Int J Heat Mass Transf 115:566–579. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.057

    Article  Google Scholar 

  32. Bai P, Haldoupis E, Dauenhauer PJ et al (2016) Understanding diffusion in hierarchical zeolites with house-of-cards Nanosheets. ACS Nano 10:7612–7618. https://doi.org/10.1021/acsnano.6b02856

    Article  Google Scholar 

  33. Galarneau A, Guenneau F, Gedeon A et al (2016) Probing interconnectivity in hierarchical microporous/Mesoporous materials using adsorption and nuclear magnetic resonance diffusion. J Phys Chem C 120:1562–1569. https://doi.org/10.1021/acs.jpcc.5b10129

    Article  Google Scholar 

  34. Vattipalli V, Qi X, Dauenhauer PJ, Fan W (2016) Long walks in hierarchical porous materials due to combined surface and Configurational diffusion. Chem Mater 28:7852–7863. https://doi.org/10.1021/acs.chemmater.6b03308

    Article  Google Scholar 

  35. Ergün AN, Kocabaş ZÖ, Yürüm A, Yürüm Y (2014) Diffusion of alcohols and aromatics in a mesoporous MCM-41 material. Fluid Phase Equilib 382:169–179. https://doi.org/10.1016/j.fluid.2014.09.009

    Article  Google Scholar 

  36. Lucena D, Tkachenko DV, Nelissen K et al (2012) Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel. Phys Rev E 85:031147. https://doi.org/10.1103/PhysRevE.85.031147

    Article  Google Scholar 

  37. Sané J, Padding JT, Louis AA (2010) The crossover from single file to Fickian diffusion. Faraday Discuss 144:285–299. https://doi.org/10.1039/b905378f

    Article  Google Scholar 

  38. Nelson PH, Auerbach SM (1999) Self-diffusion in single-file zeolite membranes is Fickian at long times. J Chem Phys 110:9235–9243. https://doi.org/10.1063/1.478847

    Article  Google Scholar 

  39. Chen Q, Moore JD, Liu Y-C et al (2010) Transition from single-file to Fickian diffusion for binary mixtures in single-walled carbon nanotubes. J Chem Phys 133:094501. https://doi.org/10.1063/1.3469811

    Article  Google Scholar 

  40. Burnecki K, Kepten E, Garini Y et al (2015) Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - an alternative approach. Sci Rep 5:11306. https://doi.org/10.1038/srep11306

    Article  Google Scholar 

  41. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77. https://doi.org/10.1016/S0370-1573(00)00070-3

    Article  MathSciNet  MATH  Google Scholar 

  42. Hlushkou D, Svidrytski A, Tallarek U (2017) Tracer-size-dependent pore space accessibility and long-time diffusion coefficient in amorphous, Mesoporous silica. J Phys Chem C 121:8416–8426. https://doi.org/10.1021/acs.jpcc.7b00264

    Article  Google Scholar 

  43. Povstenko Y (2015) Time-fractional thermoelasticity problem for a sphere subjected to the heat flux. Appl Math Comput 257:327–334. https://doi.org/10.1016/j.amc.2014.12.073

    Article  MathSciNet  MATH  Google Scholar 

  44. Crank J (1975) The mathematics of diffusion, second. Clarendon Press, Oxford

    MATH  Google Scholar 

  45. Zhokh A, Strizhak P (2017) Non-Fickian diffusion of methanol in mesoporous media: geometrical restrictions or adsorption-induced? J Chem Phys 146:124704. https://doi.org/10.1063/1.4978944

    Article  Google Scholar 

  46. Liu JY, Simpson WT (1997) Solutions of diffusion equation with constant diffusion and surface emission coefficients. Dry Technol 15:2459–2477. https://doi.org/10.1080/07373939708917370

    Article  Google Scholar 

  47. Mandelis A (1995) Green’s functions in thermal-wave physics: Cartesian coordinate representations. J Appl Phys 78:647–655

    Article  Google Scholar 

  48. Dada EA, Achenie L (2012) Production of Cylohexane from hydrogenation of benzene using microreactor technology. In: Karimi IA, Srinivasan R (eds) Computer Aided Chemical Engineering, 1st edn. Elsevier, Amsterdam, pp 240–244

  49. Burns JR, Ramshaw C (2002) A microreactor for the nitration of benzene and toluene. Chem Eng Commun 189:1611–1628. https://doi.org/10.1080/00986440214585

    Article  Google Scholar 

  50. Yavorskyy A, Shvydkiv O, Nolan K et al (2011) Photosensitized addition of isopropanol to furanones in a continuous-flow dual capillary microreactor. Tetrahedron Lett 52:278–280. https://doi.org/10.1016/j.tetlet.2010.11.018

    Article  Google Scholar 

  51. Morassutto M, van der Linde P, Schlautmann S et al (2018) Partial reduction of anthracene by cold field emission in liquid in a microreactor with an integrated planar microstructured electrode. Chem Eng Process Process Intensif 124:29–36. https://doi.org/10.1016/j.cep.2017.10.029

    Article  Google Scholar 

  52. Wang K, Zhang J, Zheng C et al (2015) A consecutive microreactor system for the synthesis of caprolactam with high selectivity. AICHE J 61:1959–1967. https://doi.org/10.1002/aic.14797

    Article  Google Scholar 

  53. Mayer J, Fichtner M, Wolf D, Schubert K (2000) A microstructured reactor for the catalytic partial oxidation of methane to syngas. In: Microreaction technology: industrial prospects. Springer, Berlin Heidelberg, pp 187–196

    Chapter  Google Scholar 

  54. Zamaniyan A, Behroozsarand A, Mehdizadeh H, Ghadirian HA (2010) Modeling of microreactor for syngas production by catalytic partial oxidation of methane. J Nat Gas Chem 19:660–668. https://doi.org/10.1016/S1003-9953(09)60135-3

    Article  Google Scholar 

  55. Liu Y, Chen G, Yue J (2020) Manipulation of gas-liquid-liquid systems in continuous flow microreactors for efficient reaction processes. J Flow Chem 10:103–121

    Article  Google Scholar 

  56. Cussler EL (2009) Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge

  57. Bhatia SK, Nicholson D (2012) Adsorption and diffusion of methane in silica Nanopores: a comparison of single-site and five-site models. J Phys Chem C 116:2344–2355. https://doi.org/10.1021/jp210593d

    Article  Google Scholar 

  58. Jobic H, Bee M, Karger J et al (1995) Measurement of the diffusivity of benzene in microporous silica by quasi-elastic neutron scattering and NMR pulsed-field gradient technique. Adsorption 1:197–201. https://doi.org/10.1007/BF00704223

    Article  Google Scholar 

Download references

Acknowledgments

K.M., A.C., and J.M-B acknowledge financial support of the statutory research fund of Institute of Chemical Engineering, Polish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Zhokh.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhokh, A., Strizhak, P., Maresz, K. et al. Diffusion in hierarchical silica monoliths: impact of pore size and probe molecule. Heat Mass Transfer 56, 3199–3207 (2020). https://doi.org/10.1007/s00231-020-02929-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02929-3

Navigation