Skip to main content
Log in

Performance of a Linde-Hampson refrigerator operating from –120 °C to –60 °C with optimised R14-hydrocarbon mixtures exhibiting vapour-liquid-liquid equilibria

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Single stage Linde-Hampson refrigerators that operate with R14-hydrocarbon mixtures can be used in place of traditional two/three stage vapour compression cascade refrigerators to provide refrigeration below–60 °C. The exergy efficiency of Linde-Hampson refrigerators can be increased by using compositions that exhibit vapour-liquid-liquid-equilibrium at low temperatures. The main aim of this work is to present the theoretical performance of a Linde-Hampson refrigerator operating with optimal R14-hydrocarbon mixtures from −120 to −60 °C. The results show that constant temperature refrigeration, however, cannot be provided above −80 °C with these mixtures. The use of nitrogen as an additional component below −100 °C is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

hj :

Enthalpy of stream j [kJ mol−1]

mi :

Number of segments in a chain of component i

ṅ:

Mole flow rate of refrigerant [mol s−1]

Pj :

Pressure of stream j [bar]

\( \overset{.}{\mathrm{Q}} \) :

Heat transfer rate [kW]

Qv :

Volumetric cooling capacity [J L−1]

TA :

Ambient temperature [°C]

TR :

Refrigeration temperature [°C]

Ẇ:

Work transfer [kW]

σi :

Segment diameter of component i [Å]

εi/kB :

Segment energy parameter of component i [K]

ηexe :

Exergy efficiency

ρj :

Molar density of stream j [mol m−3]

exj :

Exergy of stream j [kJ]

FC:

Fluorocarbon

ΔHT :

Isothermal refrigerating effect [Jmol−1]

HFC:

Hydrofluorocarbon

LLE:

Liquid-Liquid equilibrium

NBP:

Normal boiling point [°C]

Pc:

Critical Pressure [bar]

PC SAFT:

Perturbed chain statistical associating fluid theory

Tc:

Critical Temperature [°C]

TP:

Triple point [°C]

VLLE:

Vapour-liquid-liquid equilibrium

References

  1. ASHRAE (2014) ASHRAE Handbook-Refrigeration (SI). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta

    Google Scholar 

  2. Venkatarathnam G (2008) Cryogenic mixed refrigerants processes. International cryogenics monograph series. Springer, New York

    Google Scholar 

  3. Maytal B, Pfotenhauer J (2013) Miniature Joule-Thomson Cryocooling principles and practice. Springer, New York

    Book  Google Scholar 

  4. Kurita N (2017) Non-azeotropic refrigerant for extremely low temperature. US Patent application no 20170130111

  5. Yuzawa J, Yoshida F, Kobayashi S, Suto M (2009) Freezing device. US Pat 7,624,586 B2

  6. Kurita S, Kurita N (2007) Refrigerator system using non-azeotropic refrigerant used for very low temperature system. US Pat 7,299,653 B2

  7. Sivakumar M, Somasundaram P (2014) Exergy and energy analysis of three stage auto refrigerating cascade system using Zeotropic mixture for sustainable development. Energy Convers Manag 84:589–596

    Article  Google Scholar 

  8. Rui S, Zhang H, Zhang B, Wen D (2016) Experimental investigation of the performance of a single-stage auto-cascade refrigerator. Heat Mass Transf 52:11–20

    Article  Google Scholar 

  9. Rozhentsev A, Naer V (2009) Investigation of the starting modes of the low-temperature refrigerating machines working on the mixtures of refrigerants. Int J Refrig 32:901–910. https://doi.org/10.1016/j.ijrefrig.2008.11.005

    Article  Google Scholar 

  10. Wang HC, Chen GF, Dong XQ et al (2017) Performance comparison of single-stage mixed-refrigerant Joule – Thomson cycle and pure-gas reverse Brayton cycle at fixed-temperatures from 80 to 180 K. Int J Refrig 80:77–91

    Article  Google Scholar 

  11. Podtcherniaev O, Boiarski M, Flynn K (2002) Performance of throttle-cycle coolers operating with mixed refrigerants designed for industrial applications in a temperature range 110 to 190 K. Adv Cryog Eng 47:863–872

    Article  Google Scholar 

  12. UN (1997) Kyoto protocol to the United Nations framework convention on climate change. United Nations, New York

    Google Scholar 

  13. EPA (2017) The United States Environmental Protection Agency- Significant New Alternatives Policy (SNAP)

  14. Fuderer A (1965) Process of refrigeration. US Pat 3,203,194

  15. Brodyanskii VM, Gramov EA, Grezin AK et al (1971) Efficient throttling cryogenic refrigerators which operate on mixtures. Chem Pet Eng 8:1057–1061

    Article  Google Scholar 

  16. Alfeev VN, Brodyanskii VM, Yagodin VM, Nikolsky VA (1972) Cooling articles to cryogenic temperatures. S.U. patent 362,978

  17. Khatri A, Boiarskii M (1997) A throttle cycle cryocooler operating with mixed gas refrigerants in 70 K to 120 K temperature range. Cryocoolers 9:515–520

    Article  Google Scholar 

  18. Little WA, Sapozhnikov I (1998) Self-cleaning cryogenic refrigeration system. US patent 5,617,739

  19. Walimbe NS, Narayankhedkar KG, Atrey MD (2010) Experimental investigation on mixed refrigerant Joule – Thomson cryocooler with flammable and non-flammable refrigerant mixtures. Cryogenics 50:653–659

    Article  Google Scholar 

  20. Missimer DJ (1973) Self-balancing low temperature refrigeration system. US Pat 3,768,273

  21. Boiarski M, Apparao T, Flynn K et al (2003) Nonflammable mixed refrigerants (MR) for use with very low temperature throttle-cycle refrigeration systems. US Pat 6,502,410

  22. Missimer DJ (1997) Refrigerant conversion of auto-refrigerating cascade (ARC) systems. Int J Refrig 20:201–207

    Article  Google Scholar 

  23. Lavrenchenko GK (1989) Energetische kenngrößen der kreisprozesse von verdichter drossel Kûhlsystemem mit mehrkomponenten arbeitsstoffen optimaler zusammensetzung. Luft und kältetechnik 3:137–140

    Google Scholar 

  24. Boiarski M, Khatri A, Podtcherniaev O, Kovalenko V (2000) Modern trends in designing small-scale throttle-cycle coolers operating with mixed refrigerants. Cryocoolers 11:513–521

    Google Scholar 

  25. Boiarski M, Podtchereniaev O, Lunin A (2003) Optimal design and generalized performance of throttle cycle coolers operating with mixed refrigerants. In: International Congress of Refrigeration, Washington DC, p ICR0352

    Google Scholar 

  26. Podtcherniaev O, Boiarski M, Lunin A (2002) Comparative performance of two-stage cascade and mixed refrigerant systems in a temperature range from −100°C to −70°C. In: International Refrigeration and Air Conditioning Conference. Purdue E-Pubs

  27. Naer V, Rozhentsev A (2002) Application of hydrocarbon mixtures in small refrigerating and cryogenic machines. Int J Refrig 25:836–847

    Article  Google Scholar 

  28. Rozhentsev A (2008) Refrigerating machine operating characteristics under various mixed refrigerant mass charges. Int J Refrig 31:1145–1155. https://doi.org/10.1016/j.ijrefrig.2008.03.001

    Article  Google Scholar 

  29. Gross J, Sadowski G (2001) Perturbed-chain SAFT : an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res 40:1244–1260

    Article  Google Scholar 

  30. Aspen Plus (Version 9.0). Aspen Technologies Inc., Cambridge, Massachusetts, USA

  31. Vinš V, Hrubý J (2011) Solubility of nitrogen in one-component refrigerants: prediction by PC-SAFT EoS and a correlation of Henry’s law constants. Int J Refrig 34:2109–2117

    Article  Google Scholar 

  32. Zhu H, Gong M, Zhang Y, Wu J (2006) Isothermal vapor−liquid equilibrium data for Tetrafluoromethane + ethane over a temperature range from (179.68 to 210.03) K. J Chem Eng Data 51:1201–1204

    Article  Google Scholar 

  33. Zhu H, Gong M, Zhang Y, Wu J (2007) Vapor - Liquid equilibrium data of the methane + tetrafluoromethane system at temperatures from ( 159 . 61 to 178 . 93 ) K. 463–467. J Chem Eng Data. https://doi.org/10.1021/je0604030

  34. Liu Y, Guo K, Lu L (2012) Vapor - Liquid Equilibrium Measurements for a Tetra fluoromethane + Propane System over a Temperature Range from ( 142 . 96 to 293.23) K. J Chem Eng Data 57:3611–3616

    Article  Google Scholar 

  35. Wisotzki K (1984) PhD Thesis, Ruhr-Universität Bochum

  36. Justo-García DN, García-Sánchez F, Díaz-Ramírez NL, Díaz-Herrera E (2010) Modeling of three-phase vapor–liquid–liquid equilibria for a natural-gas system rich in nitrogen with the SRK and PC-SAFT EoS. Fluid Phase Equilib 298:92–96

    Article  Google Scholar 

  37. Venkatarathnam G, Murthy SS (1999) Effect of mixture composition on the formation of pinch points in condensers and evaporators for zeotropic refrigerant mixtures. Int J Refrig 22:205–215

    Article  Google Scholar 

  38. Zhang H, Gong M, Li H et al (2016) A simple model for temperature-independent kij of the PR-vdW model for mixtures containing HCs, HFCs, PFCs, HFOs, CO2, RE170 and R13I1. Fluid Phase Equilib 425:374–384

    Article  Google Scholar 

  39. Peng DY, Robinson DB (1976) A new two constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  Google Scholar 

  40. Chowdhury K, Sarangi S (1984) The effect of variable specific heat of the working fluids on the performance of counterflow heat exchangers. Cryogenics (Guildf) 24:679–680

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Venkatarathnam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerome, S., Venkatarathnam, G. Performance of a Linde-Hampson refrigerator operating from –120 °C to –60 °C with optimised R14-hydrocarbon mixtures exhibiting vapour-liquid-liquid equilibria. Heat Mass Transfer 56, 1523–1535 (2020). https://doi.org/10.1007/s00231-019-02801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02801-z

Navigation