Skip to main content
Log in

Numerical study of an impinging jet in cross-flow within and without influence of vortex generator structures on heat transfer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An impinging jet heat transfer in cross-flow within and without influence of a vortex generator pair (VGP) is studied using the unsteady Reynolds averaged Navier-Stokes (URANS) and the large-eddy simulation (LES). The jet Reynolds number is 15,000 and the cross-flow Reynolds number is 30,000. The elliptic-blending Reynolds stress model (EBRSM) is implemented and adapted to capture the effect of the jet close to the wall. A v2f model is also implemented to study the ability in predicting such a benchmark. Both models benefit from the elliptic relaxation equation in the entire computational domain. The URANS results are compared with the accurate results of the LES method and also the experimental data. The URANS method successfully presents the flow features of the impinging jet while underpredicts the enhancing heat transfer over the channel bottom wall. The URANS method fails to correctly predict the flow structures forming around the impinging region, because the method is more diffusive than the LES method. When manipulating VGP, a rectangular winglet vortex generator pair is placed in the cross-flow channel and upstream of the jet nozzle to enhance the impinging heat transfer. The VGP increases the Nusselt number at the impingement region. The structures generated by the VGP alter the effects of the cross-flow on the impinging heat transfer. There are Kelvin-Helmholtz instabilities at the shear layer of the jet and the cross-flow in the base flow (the flow without VGP). These instabilities are altered in the flow with VGP. A swirl component is added in the jet to study the effects on the heat transfer. The result shows that for a high or moderate level of swirl, the jet is diffused before the impinging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang C, Wang Z, Wang L, Luo L, Sundén B (2019) Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. Int J Heat Mass Transfer 135:935–949

    Article  Google Scholar 

  2. Hadžiabdić M, Hanjalić K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260. https://doi.org/10.1017/S002211200700955X

    Article  MATH  Google Scholar 

  3. Chauhan R, Singh T, Thakur N, Kumar N, Kumar R, Kumar A (2018) Heat transfer augmentation in solar thermal collectors using impinging air jets: a comprehensive review. Renew Sust Energ Rev 82:3179–3190

    Article  Google Scholar 

  4. Mahesh K (2013) The interaction of jets with crossflow. Annu Rev Fluid Mech 45:379–407

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu Y-H, Song S-J, Lo Y-H (2013) Jet impingement heat transfer on target surfaces with longitudinal and transverse grooves. Int J Heat Mass Transf 58(1):292–299. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.042

    Article  Google Scholar 

  6. Zuckerman N, Lior N (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Tran 39:565–631. https://doi.org/10.1016/S0065-2717(06)39006-5

    Article  Google Scholar 

  7. Caulfield C, Peltier W (2000) The anatomy of the mixing transition in homogeneous and stratified free shear layers. J Fluid Mech 413:1–47

    Article  MathSciNet  MATH  Google Scholar 

  8. Lugt HJ (1983) Vortex flow in nature and technology, vol 1. Wiley-Interscience, New York, p 305. Translation., 1983. https://doi.org/10.1017/S0022112084221447

    Google Scholar 

  9. Uddin N, Neumann SO, Weigand B (2013) LES simulations of an impinging jet: on the origin of the second peak in the nusselt number distribution. Int J Heat Mass Transf 57(1):356–368. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.052

    Article  Google Scholar 

  10. Yang L, Ren J, Jiang H, Ligrani P (2014) Experiment al and numerical investigation of unsteady impingement cooling within a blade leading edge passage. Int J Heat Mass Transf 71:57–68. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.006

    Article  Google Scholar 

  11. Xing Y, Spring S, Weigand B (2011) Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes. Int J Therm Sci 50(7):1293–1307. https://doi.org/10.1016/j.ijthermalsci.2010.11.008

    Article  Google Scholar 

  12. Worth NA, Yang Z (2006) Simulation of an impinging jet in a crossflow using a Reynolds stress transport model. Int J Numer Methods Fluids 52(2):199–211

    Article  MATH  Google Scholar 

  13. Schlegel F, Wee D, Marzouk YM, Ghoniem AF (2011) Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 676:461–490. https://doi.org/10.1017/jfm.2011.59

    Article  MathSciNet  MATH  Google Scholar 

  14. Javadi A, El-Askary WA (2012) Numerical prediction of turbulent flow structure generated by a synthetic cross-jet into a turbulent boundary layer. Int J Numer Methods Fluids 69(7):1219–1236. https://doi.org/10.1002/fld.2632

    Article  MathSciNet  MATH  Google Scholar 

  15. Zang B, New TH (2017) Near-field dynamics of parallel twin jets in cross-flow. Phys Fluids 29(3):035103

    Article  Google Scholar 

  16. Karagozian AR (2014) The jet in crossflow. Phys Fluids 26(10): 1–47

    Article  Google Scholar 

  17. Wen M-Y, Jang K-J (2003) An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. Int J Heat Mass Transf 46(24):4657–4667. https://doi.org/10.1016/S0017-9310(03)00302-8

    Article  Google Scholar 

  18. Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Tunbridge Wells, p 488

    Google Scholar 

  19. Javadi A, Nilsson H (2015) LES and DES of strongly swirling turbulent flow through a suddenly expanding circular pipe. Comput Fluids 107:301–313. https://doi.org/10.1016/j.compfluid.2014.11.014

    Article  MATH  Google Scholar 

  20. Javadi A, Bosioc A, Nilsson H, Muntean S, Susan-Resiga R (2016) Experimental and numerical investigation of the precessing helical vortex in a conical diffuser, with rotor–stator interaction. ASME J Fluids Eng 138(8):081106. https://doi.org/10.1115/1.4033416

    Article  Google Scholar 

  21. Javadi A, Nilsson H (2015) Time-accurate numerical simulations of swirling flow with rotor-stator interaction. Flow Turbul Combust 95(4):755–774. https://doi.org/10.1007/s10494-015-9632-2

    Article  Google Scholar 

  22. Javadi A, Nilsson H (2017) Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations. Int J Heat Fluid Flow 63:1–13. https://doi.org/10.1016/j.ijheatfluidflow.2016.11.010

    Article  Google Scholar 

  23. Wang C (2016) Experimental study of outlet guide vane heat transfer and gas turbine internal cooling, Ph.D. thesis, Lund University. https://lup.lub.lu.se/search/publication/dbf4ad95-1adb-4f3a-bfb4-4958f166213e

  24. Durbin PA (1991) Near-wall turbulence closure modeling without damping functions. Theor Comput Fluid Dyn 3(1):1–13

    MathSciNet  MATH  Google Scholar 

  25. Lien F-S, Kalitzin G (2001) Computations of transonic flow with the v2f turbulence model. Int J Heat Fluid Flow 22(1):53–61

    Article  Google Scholar 

  26. Manceau R, Hanjalić K (2002) Elliptic blending model: a new near-wall reynolds-stress turbulence closure. Phys Fluids 14(2):744–754

    Article  MATH  Google Scholar 

  27. Javadi A Implementation of Elliptic Blending Reynolds Stress model in OpenFOAM, Technical internal report in CFD with Open software course

  28. Thielen L, Hanjalić K, Jonker H, Manceau R (2005) Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure. Int J Heat Mass Transfer 48(8):1583–1598

    Article  MATH  Google Scholar 

  29. Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust 62(3):183–200. https://doi.org/10.1023/A:1009995426001

    Article  MATH  Google Scholar 

  30. Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys 18(4):376–404

    Article  MATH  Google Scholar 

  31. Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge. http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521598869

    MATH  Google Scholar 

  32. Lund TS, Wu X, Squires KD (1998) Generation of turbulent inflow data for spatially-developing boundary layer simulations. J Comput Phys 140(2):233–258. https://doi.org/10.1006/jcph.1998.5882

    Article  MathSciNet  MATH  Google Scholar 

  33. Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665. https://doi.org/10.1016/S0021-9991(03)00090-1

    Article  MATH  Google Scholar 

  34. Wang C, Luo L, Wang L, Sundén B (2016) Effects of vortex generators on the jet impingement heat transfer at different cross-flow reynolds numbers. Int J Heat Mass Transfer 96:278–286

    Article  Google Scholar 

  35. Barata JM, Neves FM, Vieira DF, Silva AR, et al (2014) Experimental study of two impinging jets aligned with a cross-flow. J Mod Phys 5(16):1779

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardalan Javadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, A. Numerical study of an impinging jet in cross-flow within and without influence of vortex generator structures on heat transfer. Heat Mass Transfer 56, 797–810 (2020). https://doi.org/10.1007/s00231-019-02728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02728-5

Keywords

Navigation