Skip to main content
Log in

Experimental study and analytical modeling of thermosyphon loop for cooling data center racks

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents experimental study and analytical model for a passive two-phase thermosyphon loop designed to remove directly the hot air flow inside a data center. The cooling loop with separated lines working without electricity is tested under different conditions. A mini-channel parallel-flow evaporator and a finned-tubes condenser are used to transfer heat from the data center to outside environment. Experimental tests are conducted with different n-pentane fill ratios. According to these tests, the cooling performance is showed and the refrigerant distribution is specified. The proposed steady-state model is based on the combination of the thermal and hydraulic models of the two-phase flow inside the loop. It well predicts the experimental results such as the mass flow rate and working fluid pressure drops. As investigated by the model, the most parameters influencing the cooling capacity are: the working fluid, the condenser tubes number and the outside temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

A :

Area (m2)

Bo :

Boiling number

C :

Chisholm coefficient

Co :

Convection number

c p :

Specific heat capacity (J. kg−1. K−1)

D :

Diameter (m)

f :

Fanning friction factor

g :

Acceleration due to gravity (m. s−2)

G :

Mass flux (kg. m−2. s−1)

H :

Height (m)

h :

Heat transfer coefficient (W. m−2. K−1)

h lv :

Latent heat of evaporation (J. kg−1)

ID :

Inner diameter

j :

Colburn factor

L :

Length (m)

\( \dot{m} \) :

Mass flow rate (kg. s−1)

N :

Number

Nu :

Nusselt number

Pr :

Prandtl number

∆P :

Pressure drop (Pa)

R :

Thermal resistance (K. W−1)

Ra :

Rayleigh number

Re :

Reynolds number

T :

Temperature (K)

V :

Velocity (m. s−1)

x :

Vapor quality

X :

Lockhart-Martinelli parameter

α :

Void fraction

β:

Thermal expansion coefficient (K−1)

δ :

Thickness (m)

η :

Efficiency

θ :

Inclination angle (°)

λ:

Thermal conductivity (W. m−1. K−1)

μ :

Dynamic viscosity (Pa. s)

ρ :

Density (kg. m−3)

υ:

Kinematic viscosity (m2. s−1)

Φ :

Power (W)

ϕ 2 :

Two-phase multiplier

a :

Acceleration

cd :

Condenser

ch :

Chassis

DC :

Data center

down :

Downcomer

ev :

Evaporator

f :

Fluid

fr :

Friction

gr :

Gravity

i :

Inlet

in :

Input

l :

Liquid

lo :

Liquid-only

louv :

Louver

mc :

Mini-channel

o :

Outlet

op :

Operating

out :

Outside

p :

Process

pg :

Passages

ris :

Riser

sat :

Saturation

sp :

Single-phase

tp :

Two-phase

v :

Vapor

vo :

Vapor-only

References

  1. Rasmussen N (2005) Guidelines for Specification of Data Center Power Density. Schneider Electr APC White Pap:1–18

  2. Habibi Khalaj A, Halgamuge SK (2017) A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system. Appl Energy 205:1165–1188

    Article  Google Scholar 

  3. Nada SA, Elfeky KE (2016) Experimental investigations of thermal managements solutions in data centers buildings for different arrangements of cold aisles containments. J Build Eng 5:41–49

    Article  Google Scholar 

  4. Niemann J, Brown K, Avelar V. Impact of Hot and Cold Aisle Containment on Data Center Temperature and Efficiency

  5. Daraghmeh HM, Wang CC (2017) A review of current status of free cooling in datacenters. Appl Therm Eng 114:1224–1239

    Article  Google Scholar 

  6. Bao L, Wang J, Kang L (2012) The applied effect analysis of heat exchanger installed in a typical communication base station in Beijing of China. Energy Procedia 14:620–625

    Article  Google Scholar 

  7. Longbottom C. Water cooling vs. air cooling: The rise of water use in data centres. [Online]. Available: http://www.computerweekly.com/tip/Water-cooling-vs-air-cooling-The-rise-of-water-use-in-data-centres

  8. Clidaras J, Stiver DW, Hamburgen W (2009) Water-based data center

  9. Tuma PE (2010) The merits of open bath immersion cooling of datacom equipment. Annu IEEE Semicond Therm Meas Manag Symp:123–131

  10. Jouhara H, Meskimmon R. Heat Pipe based Thermal Management Systems for Energy-Efficient Data Centres

  11. Capozzoli A, Primiceri G (2015) Cooling Systems in Data Centers: State of Art and Emerging Technologies. Energy Procedia 83:484–493

    Article  Google Scholar 

  12. Khodabandeh R (2005) Pressure drop in riser and evaporator in an advanced two-phase thermosyphon loop. Int J Refrig 28:725–734

    Article  Google Scholar 

  13. Zimmermann AJP, Melo C (2014) Two-phase loop thermosyphon using carbon dioxide applied to the cold end of a Stirling cooler. Appl Therm Eng 73(1):549–558

    Article  Google Scholar 

  14. Szulgowska-Zgrzywa M, Jouhara H (2014) Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers. 77:82–87

  15. Samba A, Louahlia-Gualous H, Le Masson S, Nörterhäuser D (2013) Two-phase thermosyphon loop for cooling outdoor telecommunication equipments. Appl Therm Eng 50(1):1351–1360

    Article  Google Scholar 

  16. Ling L, Zhang Q, Yu Y, Liao S, Sha Z (2016) Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio. Appl Therm Eng 102:375–382

    Article  Google Scholar 

  17. Zhang H, Shi Z, Liu K, Shao S, Jin T, Tian C (2017) Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers. Appl Therm Eng 111:1083–1090

    Article  Google Scholar 

  18. Franco A, Filippeschi S (2013) Experimental analysis of Closed Loop Two Phase Thermosyphon (CLTPT) for energy systems. Exp Thermal Fluid Sci 51:302–311

    Article  Google Scholar 

  19. Tong Z, Ding T, Li Z, Liu X-H (2015) An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center. Appl Therm Eng 90:362–365

    Article  Google Scholar 

  20. Chehade A, Louahlia-Gualous H, Le Masson S, Lépinasse E (2015) Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption. Appl Therm Eng 87:559–573

    Article  Google Scholar 

  21. Zivi SM (1964) Estimation of steady-state steam void-fraction by mean of the principle of minimum entropy production. J Heat Transf 86:247–251

    Article  Google Scholar 

  22. Müller-Steinhagen H, Heck K (1986) A simple pressure drop correlation for two-phase flow in pipes. Chem Eng Prog 20(1):297–308

    Article  Google Scholar 

  23. Lockhart R, Martinelli R (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45:39–48

    Google Scholar 

  24. Kandlikar SG, Garimella S, Li D, Colin S, King MR (2014) Heat Transfer and Fluid Flow in Minichannels and Microchannels

  25. Chang Y-J, Wang C-C (1996) A generalized heat transfer correlation for louver fin geometry. Int J Heat Mass Transf 40(3)

    Article  MathSciNet  Google Scholar 

  26. Lee HS (2010) Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells

  27. Akers WW, Deans A, Crosser OK (1959) Condensing Heat Transfer Within Horizontal Tubes. Chem Eng Process 55:171–176

    Google Scholar 

  28. Bar-Cohen A, Iyengar M, Kraus AD Design of Optimum Plate-Fin Natural Convective Heat Sinks. J Electron Packag 125, 2003:208

    Article  Google Scholar 

  29. Cengel YA (2003) Heat Transfer: A Practical Approach. Mc Graw-Hill, New York, pp 785–841

    Google Scholar 

  30. ETSI (2009) ETSI EN 300 019-1-3 V2.3.2, Equipment Engineering (EE); Environmental Conditions and Environmnetal Tests for Telecommunications Equipment; Part 1-3: Classification of Environmental Conditions; Stationary Use at Weatherprotected Locations. vol. 2, pp. 1–21

  31. Zhang H, Shao S, Gao Y, Xu H, Tian C (2018) The transient response , oscillation and internal flow of a loop thermosyphon with dual evaporators Réponse transitoire, oscillation et écoulement interne d ’ un thermosiphon en boucle à deux évaporateurs. Int J Refrig 88:451–457

    Article  Google Scholar 

  32. Zhang P, Shi W, Li X, Wang B, Zhang G (2018) A performance evaluation index for two-phase thermosyphon loop used in HVAC systems. Appl Therm Eng 131:825–836

    Article  Google Scholar 

  33. Vijayan PK, Nayak AK, Saha D, Gartia MR (2008) Effect of loop diameter on the steady state and stability behaviour of single-phase and two-phase natural circulation loops. Sci Technol Nucl Install 2008

  34. Zhang P, Wang B, Shi W, Han L, Li X (2015) Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer. Int J Refrig 58:172–185

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the European project SooGREEN, accredited by Celtic-Plus. The authors express their gratitude to the General Directorate for Competitiveness, Industry and Services (DGCIS) for financing this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasna Louahlia-Gualous.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadjahi, C., Louahlia-Gualous, H. & Le Masson, S. Experimental study and analytical modeling of thermosyphon loop for cooling data center racks. Heat Mass Transfer 56, 121–142 (2020). https://doi.org/10.1007/s00231-019-02695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02695-x

Navigation