Skip to main content
Log in

Numerical simulations for fluid dynamics and temperature patterns in membrane distillation channels

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effect of spacer orientation on flow behavior is studied at different spacer filament spacings using Computational Fluid Dynamics (CFD) technique. At high inlet velocity / Reynolds number the flow becomes transient and vorticity magnitude increases in a major portion of the two channels. The temperature and heat flux in this case also vary in time. The comparison of various spacer geometrical arrangements/orientations shows that the arrangements in which the spacer filaments are opposite to the membrane layers are more suitable due to higher heat transfer rates. Further appropriate turbulence models for predicting flow and heat transfer behavior in membrane channels are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C p :

Specific heat (J/kg·K)

d f :

Filament diameter (m)

d h :

Hydraulic diameter (m)

h :

Heat transfer coefficient (W/m2·K)

h ch :

Channel height (m)

k t :

Thermal conductivity (W/m·K)

k-ω :

Turbulence model, turbulent kinetic energy (m2/s2) and specific dissipation rate (1/s)

L :

Channel length (m)

l f :

Mesh length / filament spacing (m)

Nu:

Nusselt number

Pr:

Prandtl number

q w :

Heat flux (W/m2)

Re:

Reynolds number

u av :

Average velocity (m/s)

T b :

Bulk temperature (K)

T m :

Temperature at membrane surface (K)

u :

x-component of velocity (m/s)

v :

y-component of velocity (m/s)

x :

x-coordinate (m)

y :

y-coordinate (m)

ρ :

Density (kg/m3)

μ :

Viscosity (kg/m·s)

ε :

Voidage of feed or permeate channel

εm :

Voidage of membrane

θ :

Flow attack angle

References

  1. González D, Amigo J, Suárez F (2017) Membrane distillation: perspectives for sustainable and improved desalination. Renew Sustain Energy Rev 80:238–259

    Article  Google Scholar 

  2. Martínez L, Vázquez-González MI, Florido-Díaz FJ (1998) Study of membrane distillation using channel spacers. J Membr Sci 144:45–46

    Article  Google Scholar 

  3. Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: A comprehensive review. Desalination 287:2–18

    Article  Google Scholar 

  4. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84

    Article  Google Scholar 

  5. Mahdi M, Shirazi A, Ismail AF, Matsuura T (2016) Computational fluid dynamic (CFD) opportunities applied to the membrane distillation process: state-of-the-art and perspectives. Desalination 377:73–90

    Article  Google Scholar 

  6. Fimbres-Weihs GA, Wiley DE (2010) Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem Eng Process 49:759–781

    Article  Google Scholar 

  7. Katsandri A (2017) A theoretical analysis of a spacer filled flat plate membrane distillation modules using CFD: part II: temperature polarisation analysis. Desalination 408:166–180

    Article  Google Scholar 

  8. Chang H, Hsu J, Chang C, Ho C (2015) CFD study of heat transfer enhanced membrane distillation using spacer-filled channels. Energy Procedia 75:3213–3219

    Article  Google Scholar 

  9. Seo J, Kim YM, Kim JH (2017) Spacer optimization strategy for direct contact membrane distillation: shapes, configurations, diameters, and numbers of spacer filaments. Desalination 417:9–18

    Article  Google Scholar 

  10. Martínez L, Rodríguez-Maroto JM (2016) Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. J Membr Sci 274:123–137

    Article  Google Scholar 

  11. Martínez L, Vázquez-González MI, Florido-Díaz FJ (1998) Temperature polarization coefficients in membrane distillation. Sep Sci Technol 33:787–799

    Article  Google Scholar 

  12. Phattaranawik J, Jiraratananon R, Fane AG, Halim C (2001) Mass flux enhancement using spacer filled channel in direct contact membrane distillation. J Membr Sci 187:193–201

    Article  Google Scholar 

  13. Phattaranawik J, Jiraratananon R, Fane AG (2003) Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies. J Membr Sci 217:193–206

    Article  Google Scholar 

  14. Chernyshov MN, Meindersma GW, de Haan AB (2005) Comparison of spacers for temperature polarization reduction in air gap membrane distillation. Desalination 183:363–374

    Article  Google Scholar 

  15. Cipollina A, Di Miceli A, Koschikowski J, Micale G, Rizzuti L (2011) CFD simulation of a membrane distillation module channel. Desalin Water Treat 6:177–183

    Article  Google Scholar 

  16. Cipollina A, Di Miceli A, Rizzuti L (2011) Membrane distillation heat transfer enhancement by CFD analysis of internal module geometry. Desalin Water Treat 25:195–209

    Article  Google Scholar 

  17. Al-Sharif S, Albeirutty M, Cipollina A, Micale G (2013) Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code. Desalination 311:103–112

    Article  Google Scholar 

  18. Soukane S, Naceur MW, Francis L, Alsaadi A, Ghaffour N (2017) Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation. Desalination 418:43–59

    Article  Google Scholar 

  19. Yu H, Yang X, Wang R, Fane AG (2012) Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation. J Membr Sci 405-406:38–47

    Article  Google Scholar 

  20. Ahadi H, Karimi-Sabet J, Shariaty-Niassar M, Matsuura T (2018) Experimental and numerical evaluation of membrane distillation module for oxygen-18 separation. Chem Eng Res Des 132:492–504

    Article  Google Scholar 

  21. Guan G, Yao C, Lu S, Jiang Y, Yu H, Yang X (2018) Sustainable operation of membrane distillation for hypersaline applications: roles of brine salinity, membrane permeability and hydrodynamics. Desalination 445:123–137

    Article  Google Scholar 

  22. Eleiwi F, Ghaffour N, Alsaadi AS, Francis L, Laleg-Kirati TM (2016) Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination 384:1–11

    Article  Google Scholar 

  23. Shakaib M, Hasani SMF, Ahmed I, Yunus RM (2012) A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules. Desalination 284:332–340

    Article  Google Scholar 

  24. Jafarkhani M, Moraveji MK, Davarnejad R, Moztarzadeh F, Mozafari M (2012) Three-dimensional simulation of turbulent flow in a membrane tube filled with semi-circular baffles. Desalination 294:8–16

    Article  Google Scholar 

  25. Ranade VV, Kumar A (2005) Fluid dynamics of spacer filled rectangular and curvilinear channels. J Membr Sci 271:1–15

    Article  Google Scholar 

  26. Ahmed S, Seraj MT, Jahedi J, Hashib MA (2011) CFD simulation of turbulence promoters in a tubular membrane channel. Desalination 276:191–198

    Article  Google Scholar 

  27. Ahmad AL, Lau KK, Abu Bakar MZ (2005) Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel. J Membr Sci 262:138–152

    Article  Google Scholar 

  28. Cao Z, Wiley DE, Fane AG (2001) CFD simulations of net-type turbulence promoters in a narrow channel. J Membr Sci 185:157–176

    Article  Google Scholar 

  29. Chen Z, Zhao B, Chen F, Li J (2013) Effect of the flow channel structure on the nanofiltration separation performance. J Nanomater 10:Article ID 132919, 10 pages

  30. Li Y, Tung K, Lu M, Huang S (2009) Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module. J Membr Sci 329:106–118

    Article  Google Scholar 

  31. Lawson KW, Lloyd DR (1997) Membrane distillation. J Membr Sci 124:1–25

    Article  Google Scholar 

  32. Shakaib M, Ahmed I, Yunus RM (2011) Effect of permeation velocity on flow behavior and pressure drop in feed channels of membranes. In: ASEAN conference on scientific and social science research (ACSSSR2011)

  33. White FM (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  34. Schock G, Miquel A (1987) Mass transfer and pressure loss in spiral wound modules. Desalination 64:339–352

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by NED University of Engineering and Technology, Karachi, Pakistan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shakaib.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakaib, M., Haque, M.Eu. Numerical simulations for fluid dynamics and temperature patterns in membrane distillation channels. Heat Mass Transfer 55, 3509–3522 (2019). https://doi.org/10.1007/s00231-019-02678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02678-y

Navigation