Skip to main content
Log in

Experimental investigation of heat transfer and pressure drop of SiO2/water nanofluid through conduits with altered cross-sectional shapes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present study investigates experimentally the convective heat transfer and the friction factor of SiO2/water nanofluids through conduits with different cross-section shapes at constant heat flux. The effects of different parameters, such as cross-sectional shape, Reynolds number ranged from 10,000 to 35,000, and the concentration of nanoparticles on the heat transfer enhancement are studied experimentally. The experiments were carried out for different designs of conduits i.e., circular, rectangular, square, and triangular cross-section. The results show that the Nusselt number and friction factor are increased for particle concentration up to 3.0%. For circular conduit, at Reynolds number of 35,000 and 3.0% concentration of SiO2/water nanofluid, the Nusselt number and friction factor are greater than that of the based water by 18.7% and 19.6%, respectively. In addition, the results indicate that the Nusselt number through the conduit with a circular cross-section has better performance compared to other cross-section shapes. Furthermore, the conduit with triangular cross section has a highest value of the thermal enhancement factor than conduits with other shapes. In addition, the results reveal that for nanofluid of 3% concentration and at Reynolds number of 35,000, the thermal enhancement factor for triangular, square, circular and rectangular pipes is improved compared with the based water by 12.5%, 12.3%, 12.07%, and 11.9%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

area, [m2]

Cp :

specific heat, [J/kg.K]

D :

diameter, [m]

d :

equivalent diameter, [m]

f :

friction factor, [-]

h :

heat transfer coefficient, [W/m2.K]

I :

current, [A]

k :

thermal conductivity, [W/m.k]

kB :

Boltzman constant, 1.38065*10-23 [J/K]

L :

length of pipe, [m]

M :

molecular weight of based water, [g/mol]

\( \dot{m} \) :

mass flow rate, [kg/s]

N :

Avogadro number, 6.022*1023 [mol-1]

Nu :

Nusselt number, [-]

Pr :

Prandtl number, [-]

P :

Perimeter, [m]

Q :

heat transfer rate, [W]

Re :

Reynolds number, [-]

T :

temperature, [°C]

u :

fluid velocity, [m/s]

V :

Voltage, [V]

μ :

viscosity, [kg/m.s]

Δp :

pressure drop, [Pa]

ρ :

density, [kg/m3]

ϕ :

volume concentration, [%]

b :

bulk temperature

c :

cross section area

Br. :

Brownian

conv :

convection

f :

based fluid

h :

hydraulic

in :

inlet

m :

mean

n :

number

nf :

nanofluid

np :

nanoparticle

out :

outlet

s :

surface

St. :

static

CD:

Circular Conduit

NF:

Nanofluid

RD:

Rectangular Conduit

SD:

Square Conduit

TD:

Triangular Conduit

TEF:

Thermal Enhancement Factor

References

  1. Sahin B, Gedik G, Manay GE, Karagoz S (2013) Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid. Exp Thermal Fluid Sci 50:21–28

    Article  Google Scholar 

  2. Gunnasegaran P, Abdullah MZ, Yusoff MZ, Abdullah SF (2015) Optimization of SiO2 nanoparticle mass concentration and heat input on a loop heat pipe. Case Studies in Thermal Engineering 6:238–250

    Article  Google Scholar 

  3. Ahmed HE, Ahmed MI, Yusoff MZ (2016) Numerical and experimental comparative study on nanofluids flow and heat transfer in a ribbed triangular duct. Exp Heat Transfer 29:759–780

    Article  Google Scholar 

  4. Ferrouillat S, Bontemps A, Poncelet O, Soriano O, Gruss J (2013) Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids. Appl Therm Eng 51:839–851

    Article  Google Scholar 

  5. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao VD (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Thermal Fluid Sci 51:103–111

    Article  Google Scholar 

  6. Ahmed HA, Ahmed MI, Yusoff MZ (2015) Heat Transfer enhancement in a triangular duct using compound nanofluids and tabulators. Appl Therm Eng 91:191–201

    Article  Google Scholar 

  7. Ray S, Misra D (2010) Laminar fully developed flow through square and equilateral triangular ducts with rounded corners subjected to H1 and H2 boundary conditions. Int J Therm Sci 49:1763–1775

    Article  Google Scholar 

  8. Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Thermal Fluid Sci 44:483–489

    Article  Google Scholar 

  9. Salimpour MR, Parizi AD (2015) Convective heat transfer of nanofluid flow through conduits with different cross-sectional shapes. J Mech Sci Technol 29:707–713

    Article  Google Scholar 

  10. Martínez-Cuenca R, Mondragón R, Hernández L, Segarra C, Jarque JC, Hibiki T, Juliá JE (2016) Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe. Appl Therm Eng 98:841–849

    Article  Google Scholar 

  11. Heris SZ, Nassan TH, Noie SH, Sardarabadi H, Sardarabadi M (2013) Laminar convective heat transfer of Al2O3/water nanofluid through square cross-sectional duct. Int J Heat Fluid Flow 44:375–382

    Article  Google Scholar 

  12. Salimpour M, Dehshiri-Parizi A (2014) Effect of Duct Cross Sectional Shape on the Nanofluid Flow Heat Transfer, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol. pp. 1943–1947

  13. Salimpour MR, Dehshiri-Parizi AD (2015) Convective heat transfer of nanofluid flow through conduits with different cross-sectional shapes. J Mech Sci Technol 29:707–713

    Article  Google Scholar 

  14. Heris SZ, Noie SH, Talaii E, Sargolzaei J (2011) Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts. Nanoscale Res Lett 6:179

    Article  Google Scholar 

  15. Heris SZ, Talaii E, Noie SH (2012) CuO/ Water nanofluid heat transfer through triangular ducts. Iran J Chem Eng 9:23–32

    Google Scholar 

  16. Heris SZ, K-Beydokhti A, Noie SH, Rezvan S (2012) Numerical study on convective heat transfer of AL2O3/Water, CuO/Water and Cu/Water nanofluids through square cross-section duct in laminar flow. Eng Appl Comput Fluid Mech 6:1–16

    Google Scholar 

  17. Hussein AM, Sharma KV, Bakara RA, Kadirgama K (2013) The effect of cross sectional area of tube on friction factor and heat transfer nanofluid turbulent flow. Int Commun Heat Mass Transfer 47:49–55

    Article  Google Scholar 

  18. Ahmed MA, Yusoff MZ, Ng KC, Shuaib NH (2015) Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid. Case Stud Therm Eng 6:77–92

    Article  Google Scholar 

  19. Dawood HK, Mohammed HA, Munisamy KM (2014) Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition. Case Stud Therm Eng 4:32–41

    Article  Google Scholar 

  20. Gunnasegaran P, Abdullah MZ, Yusoff MZ (2015) Optimization of SiO2 nanoparticle mass concentration and heat pipe on a loop heat pipe. Case Stud Therm Eng 6:238–250

    Article  Google Scholar 

  21. Hussein AM, Sharma KV, Bakar RA, Kadirgama K (2014) A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew Sust Energ Rev 29:734–743

    Article  Google Scholar 

  22. Holman JP (2001) Experimental Methods for Engineers, seventh ed., McGraw-Hill

  23. Dittus FW, Boelter LMK (1930) Heat Transfer in Automobile Radiators of the Tubular Type. University of California Publications on Engineering 2:443–461

    MATH  Google Scholar 

  24. Colburn AP (1964) A method of correlating forced convection heat-transfer data and a comparison with fluid friction. Int J Heat Mass Transf 7:1359–1384

    Article  Google Scholar 

  25. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  26. Elnajjar E, Haik Y, Hamdan MO, Khashan S (2013) Heat transfer characteristics of multi-walled carbon nanotubes suspension in a developing channel flow. Heat Mass Transf 49:1681–1687

    Article  Google Scholar 

  27. Heris SZ, Nassan TH, Noie SH (2011) CuO/water Nanofluid Convective Heat Transfer Through Square Duct Under Uniform Heat Flux. Int J Nano Sci Nanotechnol 7(3):111–120

    Google Scholar 

  28. Aminfar H, Motallebzadeh R (2012) Investigation of the Velocity Field and Nanoparticle Concentration Distribution of Nanofluid Using Lagrangian-Eulerian Approach. J Dispers Sci Technol 33:155–163

    Article  Google Scholar 

  29. Nourafkan E, Karimi G, Moradgholi J (2015) Experimental study of laminar convective heat transfer and pressure drop of cuprous Oxide/water nanofluid inside a circular tube. Exp Heat Transfer 28:58–68

    Article  Google Scholar 

  30. Webb RL, Kim NH (2006) Principles of Enhanced Heat Transfer, second ed., Taylor & Francis Group, New York, NY

  31. Manca O, Nardini S, Ricci D (2012) A numerical study of nanofluid forced convection in ribbed channels. Appl Therm Eng 37:280–292

    Article  Google Scholar 

  32. Heris SZ, Etemad SG, Esfahany MN (2009) Convective heat transfer of a Cu/water nanofluid flowing through a circular tube. Exp Heat Transfer 22:217–227

    Article  Google Scholar 

  33. Ting HH, Hou SS (2015) Investigation of laminar convective heat transfer for Al2O3-water nanofluids flowing through a square cross-section duct with a constant heat flux. Materials 8:5321–5335. https://doi.org/10.3390/ma8085246

    Article  Google Scholar 

  34. Ting HH, Hou SS (2016) Numerical study of laminar flow and convective heat transfer utilizing nanofluids in equilateral triangular ducts with constant heat flux. Materials 9:576. https://doi.org/10.3390/ma9070576

    Article  Google Scholar 

  35. Guptaa NK, Tiwaria AK, Ghoshb SK (2018) Heat transfer mechanisms in heat pipes using nanofluids – A review. Exp thermal fluid sci 90:84–100

    Article  Google Scholar 

  36. Mehrjou B, Heris SZ, Mohamadifard K (2015) Experimental study of CuO/water nanofluid turbulent convective heat transfer in square cross-section duct. Exp Heat Transfer 28:282–297

    Article  Google Scholar 

  37. Kumar N, Sonawane SS (2016) Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int Commun Heat Mass Transfer 78:277–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Attalla.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attalla, M. Experimental investigation of heat transfer and pressure drop of SiO2/water nanofluid through conduits with altered cross-sectional shapes. Heat Mass Transfer 55, 3427–3442 (2019). https://doi.org/10.1007/s00231-019-02668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02668-0

Navigation