Advertisement

Investigation of the anomalous diffusion in the porous media: a spatiotemporal scaling

  • Alexey ZhokhEmail author
  • Peter Strizhak
Technical Note
  • 48 Downloads

Abstract

The methanol and the methane transport in the mesoporous zeolite-alumina pellet was studied. Varying the pellet’s size and the diffusant amount, the values of the diffusion coefficients were estimated. Previously, it had been demonstrated that the methane transport through the zeolite-containing pellet is described by the Fickian diffusion equation, whereas the methanol transport is described by the non-Fickian diffusion equation with either space-time-fractional or time-fractional derivative. In this respect, for calculating the diffusion coefficients, the standard diffusion and the time-fractional diffusion models were used for the methane and the methanol respectively. The relations between the obtained values of the methanol non-Fickian diffusion coefficients (0.0068–0.0276 cm2/sα) measured for unequal pellet sizes and various diffusant amounts were found to follow the temporal scaling with a fractional exponent equal to 1.17 ± 0.03, which corresponds to the time-fractional diffusion equation, in a concise manner. It supported a conclusion that the anomalous diffusion of the methanol is time-fractional. An essential applicability of the approach based on the analysis of the temporal diffusion coefficient scaling was additionally verified using the standard Fickian diffusion coefficients of the methane (0.00094–0.00376 cm2/s). In addition, we demonstrate that the investigation of the anomalous diffusion regime using the spatial scaling of the diffusion coefficient is restricted by the measurement of the diffusion length of a certain diffusant in a porous material.

Notes

Acknowledgments

This study was partially supported by the National Academy of Sciences of Ukraine.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

231_2019_2602_MOESM1_ESM.pdf (529 kb)
ESM 1 (PDF 528 kb)

References

  1. 1.
    Kondrashova D, Lauerer A, Mehlhorn D et al (2017) Scale-dependent diffusion anisotropy in nanoporous silicon. Sci Rep 7:40207CrossRefGoogle Scholar
  2. 2.
    Palombo M, Gabrielli a SVDP et al (2013) Structural disorder and anomalous diffusion in random packing of spheres. Sci Rep 3:2631.  https://doi.org/10.1038/srep02631 CrossRefGoogle Scholar
  3. 3.
    Ferreira JA, Pena G, Romanazzi G (2016) Anomalous diffusion in porous media. Appl Math Model 40:1850–1862.  https://doi.org/10.1016/j.apm.2015.09.034 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ergün AN, Kocabaş ZÖ, Yürüm A, Yürüm Y (2014) Diffusion of alcohols and aromatics in a mesoporous MCM-41 material. Fluid Phase Equilib 382:169–179.  https://doi.org/10.1016/j.fluid.2014.09.009 CrossRefGoogle Scholar
  5. 5.
    Thomas AM, Subramanian Y (2017) Hexane isomers in faujasite: anomalous diffusion and kinetic separation. J Phys Chem C 121:14745–14756.  https://doi.org/10.1021/acs.jpcc.7b04795 CrossRefGoogle Scholar
  6. 6.
    de Azevedo EN, de Sousa PL, de Souza RE et al (2006) Concentration-dependent diffusivity and anomalous diffusion: A magnetic resonance imaging study of water ingress in porous zeolite. Phys Rev E 73:11204CrossRefGoogle Scholar
  7. 7.
    Kärger J (2008) Single-File Diffusion in Zeolites. In: Karge HG, Weitkamp J (eds) Adsorpt. Diffus. Springer Berlin Heidelberg, Berlin, pp 329–366CrossRefGoogle Scholar
  8. 8.
    Martinez FSJ, Pachepsky YA, Rawls WJ (2010) Modelling solute transport in soil columns using advective–dispersive equations with fractional spatial derivatives. Adv Eng Softw 41:4–8.  https://doi.org/10.1016/j.advengsoft.2008.12.015 CrossRefzbMATHGoogle Scholar
  9. 9.
    Zhokh AA, Strizhak PE (2017) Experimental verification of the time-fractional diffusion of methanol in Silica. J Appl Nonlinear Dyn 6:135–151.  https://doi.org/10.5890/JAND.2017.06.002 CrossRefGoogle Scholar
  10. 10.
    Chen C, Raghavan R (2015) Transient flow in a linear reservoir for space-time fractional diffusion. J Pet Sci Eng 128:194–202.  https://doi.org/10.1016/j.petrol.2015.02.021 CrossRefGoogle Scholar
  11. 11.
    Zhokh A, Strizhak P (2018) Non-Fickian transport in porous media: always temporally anomalous? Transp Porous Media 124:309–323.  https://doi.org/10.1007/s11242-018-1066-6 CrossRefGoogle Scholar
  12. 12.
    Yeboah D, Singh J (2017) Dependence of exciton diffusion length and diffusion coefficient on photophysical parameters in bulk heterojunction organic solar cells. J Electron Mater 46:6451–6460.  https://doi.org/10.1007/s11664-017-5679-2 CrossRefGoogle Scholar
  13. 13.
    Zoppou C, Knight JH (1999) Analytical solution of a spatially variable coefficient advection–diffusion equation in up to three dimensions. Appl Math Model 23:667–685.  https://doi.org/10.1016/S0307-904X(99)00005-0 CrossRefzbMATHGoogle Scholar
  14. 14.
    Veniaminov A, Sillescu H, Bartsch E (2005) Spatial scale-dependent tracer diffusion in bulk polycarbonate studied by holographic relaxation. J Chem Phys 122:174902.  https://doi.org/10.1063/1.1884517 CrossRefGoogle Scholar
  15. 15.
    Bhatt PA, Pratap A, Jha PK (2013) Size and dimension dependent diffusion coefficients of SnO2 nanoparticles. AIP Conf Proc 1536:237–238.  https://doi.org/10.1063/1.4810188 CrossRefGoogle Scholar
  16. 16.
    Satyavani TVSL, Kiran BR, Kumar VR et al (2016) Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells. Eng Sci Technol an Int J 19:40–44.  https://doi.org/10.1016/j.jestch.2015.05.011 CrossRefGoogle Scholar
  17. 17.
    Kohli I, Mukhopadhyay A (2012) Diffusion of nanoparticles in semidilute polymer solutions: Effect of different length scales. Macromolecules 45:6143–6149.  https://doi.org/10.1021/ma301237r CrossRefGoogle Scholar
  18. 18.
    Lanzanò L, Scipioni L, Di Bona M et al (2017) Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat Commun 8:65.  https://doi.org/10.1038/s41467-017-00117-2 CrossRefGoogle Scholar
  19. 19.
    Narula AK, Goyal SK, Saini S et al (2009) Calculation of radon diffusion coefficient and diffusion length for different building construction materials. Indian J Phys 83:1171–1175.  https://doi.org/10.1007/s12648-009-0097-9 CrossRefGoogle Scholar
  20. 20.
    Yuan P, Liu J, Wang R, Wang X (2017) The hot carrier diffusion coefficient of sub-10 nm virgin MoS2: uncovered by non-contact optical probing. Nanoscale 9:6808–6820.  https://doi.org/10.1039/C7NR02089A CrossRefGoogle Scholar
  21. 21.
    Özarslan E, Shepherd TM, Koay CG et al (2012) Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus. Neuroimage 60:1380–1393.  https://doi.org/10.1016/j.neuroimage.2012.01.105 CrossRefGoogle Scholar
  22. 22.
    Ewing RP, Horton R (2002) Diffusion in sparsely connected pore spaces: Temporal and spatial scaling. Water Resour Res 38:21–1–21–13.  https://doi.org/10.1029/2002WR001412 CrossRefGoogle Scholar
  23. 23.
    Wu J, Berland KM (2008) Propagators and time-dependent diffusion coefficients for anomalous diffusion. Biophys J 95:2049–2052.  https://doi.org/10.1529/biophysj.107.121608 CrossRefGoogle Scholar
  24. 24.
    Fa KS, Lenzi EK (2005) Time-fractional diffusion equation with time dependent diffusion coefficient. Phys Rev E-Stat Nonlinear, Soft Matter Phys 72:11107.  https://doi.org/10.1103/PhysRevE.72.011107 CrossRefGoogle Scholar
  25. 25.
    Kanca F, Ismailov MI (2012) The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data. Inverse Probl Sci Eng 20:463–476.  https://doi.org/10.1080/17415977.2011.629093 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Olayinka S, Ioannidis MA (2004) Time-dependent diffusion and surface-enhanced relaxation in stochastic replicas of porous rock. Transp Porous Media 54:273–295.  https://doi.org/10.1023/B:TIPM.0000003660.22558.8f CrossRefGoogle Scholar
  27. 27.
    Cheng-Wu L, Hong-Lai X, Cheng G, Wen-biao L (2018) Modeling and experiments for the time-dependent diffusion coefficient during methane desorption from coal. J Geophys Eng 15:315CrossRefGoogle Scholar
  28. 28.
    Zhokh AA, Trypolskyi AI, Strizhak PE (2017) Two-path conversion of methanol to Olefins on H-ZSM-5/Al2O3 Catalyst. Theor Exp Chem 53:130–137.  https://doi.org/10.1007/s11237-017-9509-7 CrossRefGoogle Scholar
  29. 29.
    Zhokh A, Trypolskyi A, Strizhak P (2018) A diffusion cell for the mass transfer investigation in the solid porous media. Int J Chem React Eng 0:1–12.  https://doi.org/10.1515/ijcre-2018-0152 Google Scholar
  30. 30.
    Almeida R (2017) A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simul 44:460–481.  https://doi.org/10.1016/j.cnsns.2016.09.006 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Crank J (1975) The Mathematics of Diffusion. In: Second. Clarendon Press, OxfordGoogle Scholar
  32. 32.
    Pánek J, Loukotová L, Hrubý M, Štěpánek P (2018) Distribution of diffusion times determined by fluorescence (Lifetime) correlation spectroscopy. Macromolecules 51:2796–2804.  https://doi.org/10.1021/acs.macromol.7b02158 CrossRefGoogle Scholar
  33. 33.
    Zhang L, Wachemo AC, Yuan H et al (2018) Comparative analysis of residence and diffusion times in rotating bed used for biogas upgrading. Chinese J Chem Eng.  https://doi.org/10.1016/j.cjche.2018.02.016
  34. 34.
    Liu JY, Simpson WT (1997) Solutions of diffusion equation with constant diffusion and surface emission coefficients. Dry Technol 15:2459–2477.  https://doi.org/10.1080/07373939708917370 CrossRefGoogle Scholar
  35. 35.
    Banchio AJ, Heinen M, Holmqvist P, Nägele G (2018) Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles. J Chem Phys 148:134902.  https://doi.org/10.1063/1.5017969 CrossRefGoogle Scholar
  36. 36.
    Nelson PH, Auerbach SM (1999) Self-diffusion in single-file zeolite membranes is Fickian at long times. J Chem Phys 110:9235–9243.  https://doi.org/10.1063/1.478847 CrossRefGoogle Scholar
  37. 37.
    Zhokh AA, Strizhak PE (2018) Comparative study of the methane and methanol mass transfer in the mesoporous H-ZSM-5/alumina extruded pellet. Heat Mass Transf 54:1913–1924.  https://doi.org/10.1007/s00231-018-2293-7 CrossRefGoogle Scholar
  38. 38.
    Zhokh AA, Strizhak PE (2018) An accurate computational method for the diffusion regime verification. Chem Phys Lett 698:176–180.  https://doi.org/10.1016/j.cplett.2018.03.020 CrossRefGoogle Scholar
  39. 39.
    Brei VV, Chuiko AA (1989) Molecular self-diffusion on pyrogenic silica. Theor Exp Chem 25:90–93.  https://doi.org/10.1007/BF00580306 CrossRefGoogle Scholar
  40. 40.
    Bardow A, Göke V, Koß H-J et al (2005) Concentration-dependent diffusion coefficients from a single experiment using model-based Raman spectroscopy. Fluid Phase Equilib 228–229:357–366.  https://doi.org/10.1016/j.fluid.2004.08.017 CrossRefGoogle Scholar
  41. 41.
    Qingwang Y, Xiang Z, Fanhua Z et al (2017) Investigation of concentration-dependent diffusion on frontal instabilities and mass transfer in homogeneous porous media. Can J Chem Eng 96:323–338.  https://doi.org/10.1002/cjce.22913 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations