Skip to main content
Log in

Freeze and convective drying of quince (Cydonia oblonga Miller.): Effects on drying kinetics and quality attributes

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This research aimed to investigate drying characteristics and quality properties of quince subjected to freeze and convective drying at air temperatures of 45, 55, 65 and 75 °C. To determine the best drying model for those techniques, nine thin-layer mathematical models were fitted to the experimental results. The statistical analyses revealed that the Two Term, Midilli et al., Diffusion Approach and Two Term Exponential models were better than the other tested models. The results of the color analyses showed that the drying treatments had an effect on the fresh quince samples, and the color of the freeze dried samples was closest to the color values of the fresh samples. The highest rehydration ratio (2.78) was recorded for the freeze dried samples, and the lowest ratio (2.25) was observed in the samples subjected to convective drying at 75 °C. Scanning electron microscopy showed that the freeze dried quince samples were only slightly different from the fresh samples and that the disruption of the structure of the quince samples significantly increased as the convective drying temperature increased. Consequently, freeze drying can be an appropriate method for obtaining good-quality fruit samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Pacifico S, Gallicchio M, Fiorentino A, Fischer A, Meyer U, Stintzing FC (2012) Antioxidant properties and cytotoxic effects on human cancer cell lines of aqueous fermented and lipophilic quince (Cydonia oblonga Mill.) preparations. Food Chem Toxicol 50(11):4130–4135. https://doi.org/10.1016/j.fct.2012.07.061

    Article  Google Scholar 

  2. FAO (2015) Food and Agriculture Organization. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accesed 29 November 2017

  3. Wojdyło A, Teleszko M, Oszmiański J (2014) Antioxidant property and storage stability of quince juice phenolic compounds. Food Chem 152:261–270. https://doi.org/10.1016/j.foodchem.2013.11.124

    Article  Google Scholar 

  4. Adhami S, Rahimi A, Hatamipour MS (2013) Freeze drying of quince (Cydonia oblonga): Modelling of drying kinetics and characteristics. Korean J Chem Eng 30(6):1201–1206. https://doi.org/10.1007/s11814-013-0038-3

    Article  Google Scholar 

  5. Rop O, Balik J, Reznicek V, Jurikova T, Skardova P, Salas P, Sochor J, Mlcek J, Kramarova D (2011) Chemical characteristics of fruits of some selected quince (Cydonia oblonga Mill.) cultivars. Czech J Food Sci 29:65–73. https://doi.org/10.17221/212/2009-CJFS

    Article  Google Scholar 

  6. Noshad M, Mohebbi M, Shahidi F, Mortazavi SA (2012) Multi-objective optimization of osmotic–ultrasonic pretreatments and hot-air drying of quince using response surface methodology. Food Bioprocess Technol 25(6):2098–2110. https://doi.org/10.1007/s11947-011-0577-8

    Article  Google Scholar 

  7. Rawson A, Tiwari BK, Tuohy MG, O’Donnell CP, Brunton N (2011) Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrason Sonochem 18(5):1172–1179. https://doi.org/10.1016/j.ultsonch.2011.03.009

    Article  Google Scholar 

  8. Guine RPF, Barroca MJ (2012) Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food Bioprod Process 90:58–63. https://doi.org/10.1016/j.fbp.2011.01.003

    Article  Google Scholar 

  9. Rajkumar G, Shanmugam S, Galvao MDS, Leite Neta MTS, Dutra Sandes RD, Mujumdar AS, Narain N (2017) Comparative evaluation of physical properties and aroma profile of carrot slices subjected to hot air and freeze drying. Dry Technol 35(6):699–708. https://doi.org/10.1080/07373937.2016.1206925

    Article  Google Scholar 

  10. Lee CW, Oh HJ, Han SH, Lim SB (2012) Effects of hot air and freeze drying methods on physicochemical properties of citrus ‘hallabong’ powders. Food Sci Biotechnol 21(6):1633–1639. https://doi.org/10.1007/s10068-012-0217-8

    Article  Google Scholar 

  11. Oikonomopoulou VP, Krokida MK (2012) Structural properties of dried potatoes, mushrooms, and strawberries as a function of freeze-drying pressure. Dry Technol 30(4):351–361. https://doi.org/10.1080/07373937.2011.639475

    Article  Google Scholar 

  12. Siriamornpun S, Kaisoon O, Meeso N (2012) Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J Funct Foods 4(4):757–766. https://doi.org/10.1016/j.jff.2012.05.002

    Article  Google Scholar 

  13. Caliskan G, Dirim SN (2017) Drying characteristics of pumpkin (Cucurbita moschata) slices in convective and freeze dryer. Heat Mass Transf 53(6):2129–2141. https://doi.org/10.1007/s00231-017-1967-x

    Article  Google Scholar 

  14. Tzempelikos DA, Vouros AP, Bardakas AV, Filios AE, Margaris DP (2015) Experimental study on convective drying of quince slices and evaluation of thin-layer drying models. Eng Agric Environ Food 8(3):169–177. https://doi.org/10.1016/j.eaef.2014.12.002

    Article  Google Scholar 

  15. Doymaz İ, Demir H, Yildirim A (2015). Drying of quince slices: effect of pretreatments on drying and rehydration characteristics. Chem Eng Commun 202(10):1271–1279. https://doi.org/10.1080/00986445.2014.921619

  16. Sadin R, Chegini GR, Sadin H (2014) The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat Mass Transf 50(4):501–507. https://doi.org/10.1007/s00231-013-1255-3

    Article  Google Scholar 

  17. İzli G (2017) Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods. Food Sci Technol 37(1):139–147. https://doi.org/10.1590/1678-457x.14516

    Google Scholar 

  18. Ergün K, Çalışkan G, Dirim SN (2016) Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transf 52(12):2697–2705. https://doi.org/10.1007/s00231-016-1773-x

    Article  Google Scholar 

  19. Belghith A, Azzouz S, ElCafsi A (2016) Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato. Heat Mass Transf 52(3):407–419. https://doi.org/10.1007/s00231-015-1560-0

    Article  Google Scholar 

  20. Perea-Flores MJ, Garibay-Febles V, Chanona-Perez JJ, Calderon-Dominguez G, Mendez-Mendez JV, Palacios-González E, Gutierrez-Lopez GF (2012) Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind Crop Prod 38:64–71. https://doi.org/10.1016/j.indcrop.2012.01.008

    Article  Google Scholar 

  21. Mohamadi M, Pourfallah M, Nahardani Z, Meshkani M (2015) Mathematical modeling and optimization of drying kinetic of quince (Cydonia olonga) fruit slices. J Food Technol Nutr 12(1):49–58

    Google Scholar 

  22. Topuz A, Feng H, Kushad M (2009) The effect of drying method and storage on color characteristics of paprika. LWT-Food Sci Technol 42(10):1667–1673. https://doi.org/10.1016/j.lwt.2009.05.014

    Article  Google Scholar 

  23. Doymaz İ (2012) Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energ Convers Manage 56:199–205. https://doi.org/10.1016/j.enconman.2011.11.027

    Article  Google Scholar 

  24. Aral S, Beşe AV (2016) Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem 210:577–584. https://doi.org/10.1016/j.foodchem.2016.04.128

    Article  Google Scholar 

  25. Kayacan S, Sagdic O, Doymaz I (2018) Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. J Food Meas Charact 12(2):1274–1283. https://doi.org/10.1007/s11694-018-9741-4

    Article  Google Scholar 

  26. Lee JH, Kim HJ (2008) Drying kinetics of onion slices in a hot-air dryer. Prev Nutr Food Sci 13(3):225–230. https://doi.org/10.3746/jfn.2008.13.3.225

    Article  Google Scholar 

  27. Vega-Gálvez A, Zura-Bravo L, Lemus-Mondaca R, Martinez-Monzó J, Quispe-Fuentes I, Puente L, Di Scala K (2015) Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.). J Food Sci Technol 52(4):2304–2311. https://doi.org/10.1007/s13197-013-1235-0

    Article  Google Scholar 

  28. Gaware TJ, Sutar N, Thorat BN (2010) Drying of tomato using different methods: comparison of dehydration and rehydration kinetics. Dry Technol 28(5):651–658. https://doi.org/10.1080/07373931003788759

    Article  Google Scholar 

  29. Parlak N (2015) Fluidized bed drying characteristics and modeling of ginger (Zingiber officinale) slices. Heat Mass Transf 51(8):1085–1095. https://doi.org/10.1007/s00231-014-1480-4

    Article  Google Scholar 

  30. Ban ZJ, Wei WW, Yang XZ, Feng JH, Guan JF, Li L (2015) Combination of heat treatment and chitosan coating toimprove postharvest quality of wolfberry (Lycium barbarum). Int J Food Sci Technol 50:1019–1025. https://doi.org/10.1111/ijfs.12734

    Article  Google Scholar 

  31. Garcia-Martinez E, Igual M, Martin-Esparza ME, Martinez-Navarrete N (2013) Assessment of the bioactive compounds, color, and mechanical properties of apricots as affected by drying treatment. Food Bioprocess Technol 6:3247–3255. https://doi.org/10.1007/s11947-012-0988-1

    Article  Google Scholar 

  32. Pathare PB, Opara UL, Al-Said FAJ (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol 6(1):36–60. https://doi.org/10.1007/s11947-012-0867-9

    Article  Google Scholar 

  33. Fang S, Wang Z, Hu X, Chen F, Zhao G, Liao X, Wu J, Zhang YAN (2011) Energy requirement and quality aspects of Chinese jujube (Zizyphus jujuba Miller) in hot air drying followed by microwave drying. J Food Process Eng 34(2):491–510. https://doi.org/10.1111/j.1745-4530.2009.00372.x

    Article  Google Scholar 

  34. Izli N, Isık E (2013) Batch drying characteristics of dent corn (Zea mays var. indentata Sturt.). J Food Agric Environ 11(1):259–263

    Google Scholar 

  35. Kammoun Bejar A, Kechaou N, Boudhrioua Mihoubi N (2011) Effect of microwave treatment on physical and functional properties of orange (Citrus sinensis) peel and leaves. J Food Process Technol 2(02):109–116. https://doi.org/10.4172/2157-7110.1000109

    Article  Google Scholar 

  36. Seremet L, Botez E, Nistor OV, Andronoiu DG, Mocanu GD (2016) Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem 195:104–109. https://doi.org/10.1016/j.foodchem.2015.03.125

    Article  Google Scholar 

  37. Vega-Gálvez ALMS, Lemus-Mondaca R, Bilbao-Sáinz C, Fito P, Andrés A (2008) Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). J Food Eng 85(1):42–50. https://doi.org/10.1016/j.jfoodeng.2007.06.032

    Article  Google Scholar 

  38. Beigi M (2017) Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy consumption. Heat Mass Transf 53(8):2711–2718. https://doi.org/10.1007/s00231-017-2018-3

    Article  Google Scholar 

  39. Hernando I, Sanjuán N, Pérez-Munuera I, Mulet A (2008) Rehydration of freeze-dried and convective dried Boletus edulis mushrooms: effect on some quality parameters. J Food Sci 73(8):356–362. https://doi.org/10.1111/j.1750-3841.2008.00913.x

    Article  Google Scholar 

  40. Yi J, Zhou L, Bi J, Chen Q, Liu X, Wu X (2016) Impacts of pre-drying methods on physicochemical characteristics, color, texture, volume ratio, microstructure and rehydration of explosion puffing dried pear chips. J Food Process Preserv 40(5):863–873. https://doi.org/10.1111/jfpp.12664

    Article  Google Scholar 

  41. Huang TC, Chung CC, Wang HY, Law CL, Chen HH (2011) Formation of 6-shogaol of ginger oil under different drying conditions. Dry Technol 29(16):1884–1889. https://doi.org/10.1080/07373937.2011.589554

    Article  Google Scholar 

  42. An K, Zhao D, Wang Z, Wu J, Xu Y, Xiao G (2016) Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem 197:1292–1300. https://doi.org/10.1016/j.foodchem.2015.11.033

    Article  Google Scholar 

  43. Salehi F, Kashaninejad M, Jafarianlari A (2017) Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices. Heat Mass Transf 53(5):1751–1759. https://doi.org/10.1007/s00231-016-1931-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmi Izli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izli, N., Polat, A. Freeze and convective drying of quince (Cydonia oblonga Miller.): Effects on drying kinetics and quality attributes. Heat Mass Transfer 55, 1317–1326 (2019). https://doi.org/10.1007/s00231-018-2516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2516-y

Navigation